Skip to main content
Log in

New sets of optimal low-hit-zone frequency-hopping sequences based on m-sequences

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

In quasi-synchronous frequency-hopping multiple-access systems where relative delays are restricted within a certain correlation zone, low-hit-zone frequency-hopping sequences (LHZ-FHSs) are commonly employed to minimize multiple-access interferences. In this paper, we present two classes of optimal LHZ-FHS sets with respect to the Peng-Fan-Lee bound, which are obtained from an m-sequence and its decimated sequence, respectively. The parameters of these LHZ-FHS sets are new and flexible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Simon, M.K., Omura, J.K., Scholtz, R.A., Levitt, B.K.: Spread Spectrum Communications Handbook. Mc-Graw-Hill, New York (1994)

    Google Scholar 

  2. Wicker, S.B., Bharagava, V.K.: Reed-Solomon Codes and Their Applications. IEEE Press, Piscataway (1994)

    Google Scholar 

  3. Fan, P.Z., Darnell, M.: Sequence Design for Communications Applications. Research Studies Press (RSP). Wiley, London (1996)

    Google Scholar 

  4. Lempel, A., Greenberger, H.: Families of sequences with optimal Hamming correlation properties. IEEE Trans. Inf. Theory 20, 90–94 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  5. Peng, D.Y., Fan, P.Z.: Lower bounds on the Hamming auto- and cross correlations of frequency-hopping sequences. IEEE Trans. Inf. Theory 50, 2149–2154 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Udaya, P., Siddiqi, M.U.: Optimal large linear complexity frequency hopping patterns derived from polynomial residue class rings. IEEE Trans. Inf. Theory 44, 1492–1503 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ding, C., Moisio, M.J., Yuan, J.: Algebraic constructions of optimal frequency-hopping sequences. IEEE Trans. Inf. Theory 53, 2606–2610 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ding, C., Yin, J.: Sets of optimal frequency-hopping sequences. IEEE Trans. Inf. Theory 54, 3741–3745 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ding, C., Fuji-Hara, R., Fujiwara, Y., Jimbo, M., Mishima, M.: Sets of frequency hopping sequences: bounds and optimal constructions. IEEE Trans. Inf. Theory 55, 3297–3304 (2009)

    Article  MathSciNet  Google Scholar 

  10. Ge, G., Miao, Y., Yao, Z.: Optimal frequency hopping sequences: Auto- and cross-correlation properties. IEEE Trans. Inf. Theory 55, 867–879 (2009)

    Article  MathSciNet  Google Scholar 

  11. Han, Y., Yang, K.: On the Sidel’nikov sequences as frequency-hopping sequences. IEEE Trans. Inf. Theory 55, 4279–4285 (2009)

    Article  MathSciNet  Google Scholar 

  12. Chung, J.-H., Han, Y., Yang, K.: New classes of optimal frequency-hopping sequences by interleaving techniques. IEEE Trans. Inf. Theory 55, 5783–5791 (2009)

    Article  MathSciNet  Google Scholar 

  13. Chung, J.-H., Yang, K.: Optimal frequency-hopping sequences with new parameters. IEEE Trans. Inf. Theory 56, 1685–1693 (2010)

    Article  MathSciNet  Google Scholar 

  14. Chung, J.-H., Gong, G., Yang, K.: New families of optimal frequency-hopping sequences of composite lengths. IEEE Trans. Inf. Theory 60, 3688–3697 (2014)

    Article  MathSciNet  Google Scholar 

  15. Han, H., Peng, D.: Set of optimal frequency-hopping sequences based on polynomial theory. Electron. Lett. 50, 214–216 (2014)

    Article  Google Scholar 

  16. Gaudenzi, R.D., Elia, C., Viola, R.: Bandlimited quasi-synchronous CDMA: A novel satellite access technique for mobile and personal communication systems. IEEE J. Sel. Areas Commun 10, 328–343 (1992)

    Article  Google Scholar 

  17. Ye, W.X., Fan, P.Z.: Two classes of frequency hopping sequences with no-hit zone. In: Proc. 7th Int. Symp. on Communication Theory and Applications, pp. 304–306. Ambleside (2003)

  18. Wang, X.N., Fan, P.Z.: A class of frequency hopping sequences with no hit zone. Proc. of the 4th International Conference on Parallel and Distributed Computing. Appl. Technol., 896–898 (2003)

  19. Ye, W.X., Fan, P.Z., Gabidulin, E.M.: Construction of non-repeating frequency-hopping sequences with no-hit zone. Electron. Lett. 42, 681–682 (2006)

    Article  Google Scholar 

  20. Chung, J.-H., Han, Y., Yang, K.: No-hit-zone frequency-hopping sequence sets with optimal Hamming autocorrelation. IEICE Trans. Fund. Electron. Commun. Comput. Sci. 93-A, 2239–2244 (2010)

    Article  Google Scholar 

  21. Peng, D.Y., Fan, P.Z., Lee, M.H.: Lower bounds on the periodic Hamming correlations of frequency hopping sequences with low hit zone. Sci. China: Series F Inf. Sci. 49, 1–11 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ma, W.P., Sun, S.H.: New designs of frequency hopping sequences with low hit zone. Des. Codes Cryptograph. 60, 145–153 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Niu, X., Peng, D., Zhou, Z.: New classes of optimal low hit zone frequency hopping sequences with new parameters by interleaving technique. IEICE Trans. Fund. Electron. Commun. Comput. Sci. 95-A, 1835–1842 (2012)

    Article  Google Scholar 

  24. Chung, J.-H., Yang, K: New classes of optimal low-hit-zone frequency-hopping sequence sets by Cartesian product. IEEE Trans. Inf. Theory 59, 726–732 (2013)

    Article  MathSciNet  Google Scholar 

  25. Golomb, S.W., Gong, G.: Signal Design for Good Correlation: For Wireless Communication, Cryptography and Radar. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  26. Zhou, Z., Tang, X., Niu, X., Udaya, P.: New classes of frequency-hopping sequences with optimal partial correlation. IEEE Trans. Inf. Theory 58, 453–458 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by National Science Foundation of China (Grant No. 61271244), National High Technology Research and Development Program of China (863 Program) (Grant No. 2015AA01A705), and National Science Foundation of China (Grant No. 61571373).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyu Han.

Appendices

Appendix A:

Proof Proof of Theorem 1

Clearly, \(\mathcal {U}\) contains q k(q−1) sequences of length q n−1 over V k . Let M i ={m i (l)} = b i M, 0≤i<q−1, 0≤l<q n−1. For any two FHSs \(U_{i_{1},j_{1}}, U_{i_{2},j_{2}}\in \mathcal {U}\), the periodic Hamming correlation \(H_{U_{i_{1},j_{1}}, U_{i_{2},j_{2}}}(\tau )\) at time delay τ can be calculated as follows:

$$\begin{array}{@{}rcl@{}} H_{U_{i_{1},j_{1}}, U_{i_{2},j_{2}}}(\tau)=\sum\limits_{l=0}^{q^{n}-2}h[\phi(M_{i_{1}}(l,k)+\phi^{-1}(a_{j_{1}})),\phi(M_{i_{2}}(l+\tau,k)+\phi^{-1}(a_{j_{2}}))] \\ =|\{l|\phi(M_{i_{1}}(l,k)+\phi^{-1}(a_{j_{1}}))=\phi(M_{i_{2}}(l+\tau,k)+\phi^{-1}(a_{j_{2}})), 0\leq l< q^{n}-1\}|, \end{array} $$

where 0<τ<q n−1 when (i 1,j 1)=(i 2,j 2), and 0≤τ<q n−1 when (i 1,j 1)≠(i 2,j 2).

Since ϕ is one-to-one, then we have

$$\begin{array}{@{}rcl@{}} H_{U_{i_{1},j_{1}}, U_{i_{2},j_{2}}}(\tau) =|\{l|M_{i_{1}}(l,k)-M_{i_{2}}(l+\tau,k)=\phi^{-1}(a_{j_{2}})-\phi^{-1}(a_{j_{1}}), 0\leq l< q^{n}-1\}|. \end{array} $$

Let \(S_{i_{1},i_{2}} = \{s_{i_{1},i_{2}}(l)\} = \{m_{i_{1}}(l)\}-\{m_{i_{2}}(l+\tau )\}\) be a sequence of length q n−1 and \(\mathbf {r}_{j_{1},j_{2}}=\phi ^{-1}(a_{j_{2}})-\phi ^{-1}(a_{j_{1}})\) a k-tuple. It then follows that

$$\begin{array}{@{}rcl@{}} H_{U_{i_{1},j_{1}}, U_{i_{2},j_{2}}}(\tau) =|\{l|S_{i_{1},i_{2}}(l,k)=\mathbf{r}_{j_{1},j_{2}}, 0\leq l<q^{n}-1\}|. \end{array} $$
(7)

Equation (7) is equivalent to

$$\begin{array}{@{}rcl@{}} H_{U_{i_{1},j_{1}}, U_{i_{2},j_{2}}}(\tau) = N_{S_{i_{1},i_{2}}}(\mathbf{r}_{j_{1},j_{2}}). \end{array} $$
(8)

Since α is a primitive element of \(\mathbf {F}_{q^{n}}\), then α W is a primitive element of F q . Let \(b_{i_{1}}=\alpha ^{Wd_{1}}\), \(b_{i_{2}}=\alpha ^{Wd_{2}}\), 0≤d 1,d 2<q−1, and τ = τ 1 W + τ 2, 0≤τ 1<q−1, 0≤τ 2<W. For all 0≤l<q n−1, we have

$$\begin{array}{@{}rcl@{}} s_{i_{1},i_{2}}(l) &=& m_{i_{1}}(l)-m_{i_{2}}(l+\tau) \\ &=&b_{i_{1}}tr_{q^{n}/q}(\eta \alpha^{l})-b_{i_{2}}tr_{q^{n}/q}(\eta \alpha^{l+\tau}) \\ &=&tr_{q^{n}/q}((b_{i_{1}}-b_{i_{2}}\alpha^{\tau})\eta \alpha^{l}) \\ &=&tr_{q^{n}/q}((1-\alpha^{(d_{2}-d_{1}+\tau_{1})W+\tau_{2}})\alpha^{Wd_{1}}\eta \alpha^{l}). \end{array} $$

It is easy to check that \(S_{i_{1},i_{2}}\) is an m-sequence of length q n−1 when \(1-\alpha ^{(d_{2}-d_{1}+\tau _{1})W+\tau _{2}}\neq 0\).

In order to compute \(H_{U_{i_{1},j_{1}}, U_{i_{2},j_{2}}}(\tau )\), we divide the problem into four cases.

Case 1

i 1 = i 2, j 1 = j 2, 0<τ<q n−1. In this case, we have

$$\begin{array}{@{}rcl@{}} \mathbf{r}_{j_{1},j_{2}}=\textbf{0}_{k} \end{array} $$

and

$$\begin{array}{@{}rcl@{}} s_{i_{1},i_{2}}(l) = tr_{q^{n}/q}((1-\alpha^{\tau})\alpha^{Wd_{1}}\eta \alpha^{l}). \end{array} $$

Since 0<τ<q n−1, it is obvious that 1−α τ≠0. From Lemma 3 and (8), we obtain

$$\begin{array}{@{}rcl@{}} H_{U_{i_{1},j_{1}}, U_{i_{2},j_{2}}}(\tau) = q^{n-k}-1. \end{array} $$

Case 2

i 1 = i 2, j 1j 2, 0≤τ<q n−1. In this case, we have

$$\begin{array}{@{}rcl@{}} \mathbf{r}_{j_{1},j_{2}}\neq \textbf{0}_{k} \end{array} $$

and

$$\begin{array}{@{}rcl@{}} s_{i_{1},i_{2}}(l) = tr_{q^{n}/q}((1-\alpha^{\tau})\alpha^{Wd_{1}}\eta \alpha^{l}). \end{array} $$

From Lemma 3 and (8), we get

$$\begin{array}{@{}rcl@{}} H_{U_{i_{1},j_{1}}, U_{i_{2},j_{2}}}(\tau) = \left\{\!\!\!\begin{array}{lll} \ 0, \ \ \ \ \ \tau=0 \\ \ q^{n-k}, \ \ 0<\tau<q^{n}-1. \end{array}\right. \end{array} $$

Case 3

i 1i 2, j 1 = j 2, 0≤τ<q n−1. In this case, we have

$$\begin{array}{@{}rcl@{}} \mathbf{r}_{j_{1},j_{2}}= \textbf{0}_{k} \end{array} $$

and

$$\begin{array}{@{}rcl@{}} s_{i_{1},i_{2}}(l) = tr_{q^{n}/q}((1-\alpha^{(d_{2}-d_{1}+\tau_{1})W+\tau_{2}})\alpha^{Wd_{1}}\eta \alpha^{l}). \end{array} $$

From Lemma 3 and (8), it follows that

$$\begin{array}{@{}rcl@{}} H_{U_{i_{1},j_{1}}, U_{i_{2},j_{2}}}(\tau) = \left\{\!\!\!\begin{array}{lll} \ q^{n}-1, \ \ \ \ \ \text{if} \ d_{2}-d_{1}+\tau_{1} \equiv 0 \ \text{mod} \ (q-1) \ \text{and}\ \tau_{2}=0 \\ \ q^{n-k}-1, \ \ \text{otherwise}. \end{array}\right. \end{array} $$

Since 1≤|d 2d 1|<q−1, there exist two FHSs \(U_{i^{\prime }_{1},j^{\prime }_{1}}, U_{i^{\prime }_{2},j^{\prime }_{2}} \in \mathcal {U}\), whose periodic Hamming correlation \(H_{U_{i^{\prime }_{1},j^{\prime }_{1}}, U_{i^{\prime }_{2},j^{\prime }_{2}}}(\tau )\) can be given by

$$\begin{array}{@{}rcl@{}} H_{U_{i^{\prime}_{1},j^{\prime}_{1}}, U_{i^{\prime}_{2},j^{\prime}_{2}}}(\tau) = \left\{\!\!\!\begin{array}{lll} \ q^{n}-1,\ \ \ \ \ \tau=W \\ \ q^{n-k}-1, \ \ \ \text{otherwise}. \end{array}\right. \end{array} $$

Case 4

i 1i 2, j 1j 2, 0≤τ<q n−1. In this case, we have

$$\begin{array}{@{}rcl@{}} \mathbf{r}_{j_{1},j_{2}}\neq \textbf{0}_{k} \end{array} $$

and

$$\begin{array}{@{}rcl@{}} s_{i_{1},i_{2}}(l) = tr_{q^{n}/q}((1-\alpha^{(d_{2}-d_{1}+\tau_{1})W+\tau_{2}})\alpha^{Wd_{1}}\eta \alpha^{l}). \end{array} $$

From Lemma 3 and (8), it follows that

$$\begin{array}{@{}rcl@{}} H_{U_{i_{1},j_{1}}, U_{i_{2},j_{2}}}(\tau) = \left\{\!\!\!\begin{array}{lll} \ 0, \ \ \ \ \ \ \text{if} \ d_{2}-d_{1}+\tau_{1} \equiv 0 \ \text{mod} \ (q-1) \ \text{and}\ \tau_{2}=0 \\ \ q^{n-k}, \ \ \text{otherwise}. \end{array}\right. \end{array} $$

By summarizing the results of the above four cases, we have

$$\begin{array}{@{}rcl@{}} H_{U_{i_{1},j_{1}}, U_{i_{2},j_{2}}}(\tau) \leq q^{n-k} \end{array} $$

for 0<τ<W when (i 1,j 1)=(i 2,j 2), and for 0≤τ<W when (i 1,j 1)≠(i 2,j 2). Thus, \(\mathcal {U}\) is a (q n−1,q k(q−1),q k,W−1,q nk) LHZ-FHS set.

We then check the optimality of \(\mathcal {U}\) with respect to the Peng-Fan-Lee Bound,

$$\begin{array}{@{}rcl@{}} \varepsilon &\geq& \left\lceil\frac{(q^{k}(q-1)(W-1)+q^{k}(q-1)-q^{k})(q^{n}-1)}{(q^{k}(q-1)(W-1)+q^{k}(q-1)-1)q^{k}}\right\rceil \\ &=&\left\lceil\frac{(q^{n}-2)(q^{n}-1)}{q^{k}(q^{n}-1)-1}\right\rceil \\ &=&\left\lceil q^{n-k}-\frac{2q^{n}-q^{n-k}-2}{q^{n+k}-q^{k}-1}\right\rceil. \end{array} $$

Since

$$\begin{array}{@{}rcl@{}} 0< \frac{2q^{n}-q^{n-k}-2}{q^{n+k}-q^{k}-1} <1, \end{array} $$

it follows that

$$\begin{array}{@{}rcl@{}} \varepsilon \geq q^{n-k}. \end{array} $$

According to Definition 2, \(\mathcal {U}\) is a (q n−1,q k(q−1),q k,W−1,q nk) LHZ-FHS set with optimal maximum periodic Hamming correlation. □

Appendix B:

Proof Proof of Theorem 2

Clearly, \(\mathcal {G}\) contains q−1 sequences of length \(\frac {q^{n}-1}{t}\) over V k . Similar to the proof of Theorem 1. Let H i ={h i (l)} = b i H, 0≤i<q−1, \(0\leq l< \frac {q^{n}-1}{t}\). For any two FHSs \(G_{i_{1}}, G_{i_{2}}\in \mathcal {G}\), the periodic Hamming correlation \(H_{G_{i_{1}}, G_{i_{2}}}(\tau )\) at time delay τ can be calculated as follows:

$$\begin{array}{@{}rcl@{}} H_{G_{i_{1}}, G_{i_{2}}}(\tau)&=&\sum\limits_{l=0}^{\frac{q^{n}-1}{t}-1}h[\phi(H_{i_{1}}(l,k)),\phi(H_{i_{2}}(l+\tau,k))] \\ &=&|\{l|\phi(H_{i_{1}}(l,k))=\phi(H_{i_{2}}(l+\tau,k)), 0\leq l< \frac{q^{n}-1}{t}\}|, \end{array} $$

where \(0<\tau < \frac {q^{n}-1}{t}\) when i 1 = i 2, and \(0\leq \tau < \frac {q^{n}-1}{t}\) when i 1i 2.

Since ϕ is one-to-one, then we have

$$\begin{array}{@{}rcl@{}} H_{G_{i_{1}}, G_{i_{2}}}(\tau) =|\{l|H_{i_{1}}(l,k)-H_{i_{2}}(l+\tau,k)=\textbf{0}_{k}, 0\leq l< \frac{q^{n}-1}{t}\}|. \end{array} $$

Let \(P_{i_{1},i_{2}}= \{p_{i_{1},i_{2}}(l)\} = \{h_{i_{1}}(l)\}-\{h_{i_{2}}(l+\tau )\}\) be a sequence of length \(\frac {q^{n}-1}{t}\). It then follows that

$$\begin{array}{@{}rcl@{}} H_{G_{i_{1}}, G_{i_{2}}}(\tau) =|\{l|P_{i_{1},i_{2}}(l,k)=\textbf{0}_{k}, 0\leq l<\frac{q^{n}-1}{t}\}|. \end{array} $$
(9)

Equation (9) is equivalent to

$$\begin{array}{@{}rcl@{}} H_{G_{i_{1}}, G_{i_{2}}}(\tau) = N_{P_{i_{1},i_{2}}}(\textbf{0}_{k}). \end{array} $$
(10)

Let \(b_{i_{1}}=\alpha ^{Wd_{1}}\), \(b_{i_{2}}=\alpha ^{Wd_{2}}\), 0≤d 1,d 2<q−1, and τ = τ 1 W + τ 2, \(0\leq \tau _{1}<\frac {q-1}{t}\), 0≤τ 2<W. For all \(0\leq l<\frac {q^{n}-1}{t}\), we have

$$\begin{array}{@{}rcl@{}} p_{i_{1},i_{2}}(l) &=& h_{i_{1}}(l)-h_{i_{2}}(l+\tau) \\ &=&b_{i_{1}}tr_{q^{n}/q}(\gamma \delta^{l})-b_{i_{2}}tr_{q^{n}/q}(\gamma \delta^{l+\tau}) \\ &=&tr_{q^{n}/q}((b_{i_{1}}-b_{i_{2}}\delta^{\tau})\gamma \delta^{l}) \\ &=&tr_{q^{n}/q}((1-\alpha^{(d_{2}-d_{1}+t\tau_{1})W+t\tau_{2}})\alpha^{Wd_{1}}\gamma \delta^{l}). \end{array} $$

It can be seen that \(P_{i_{1},i_{2}}\) is a t-decimated sequence of m-sequence when \(1-\alpha ^{(d_{2}-d_{1}+t\tau _{1})W+t\tau _{2}}\) ≠0.

We distinguish the following two cases to calculate \(H_{G_{i_{1}}, G_{i_{2}}}(\tau )\).

Case 1

i 1 = i 2, \(0<\tau <\frac {q^{n}-1}{t}\). In this case, we have

$$\begin{array}{@{}rcl@{}} p_{i_{1},i_{2}}(l) = tr_{q^{n}/q}((1-\alpha^{t\tau})\alpha^{Wd_{1}}\gamma \delta^{l}). \end{array} $$

Since \(0<\tau <\frac {q^{n}-1}{t}\), it is obvious that 1−α tτ≠0. From Lemma 4 and (10), we obtain

$$\begin{array}{@{}rcl@{}} H_{G_{i_{1}}, G_{i_{2}}}(\tau) = \frac{q^{n-k}-1}{t}. \end{array} $$

Case 2

i 1i 2, \(0\leq \tau <\frac {q^{n}-1}{t}\). In this case, we have

$$\begin{array}{@{}rcl@{}} p_{i_{1},i_{2}}(l) = tr_{q^{n}/q}((1-\alpha^{(d_{2}-d_{1}+t\tau_{1})W+t\tau_{2}})\alpha^{Wd_{1}}\gamma \delta^{l}). \end{array} $$

From Lemma 4 and (10), it follows that

$$\begin{array}{@{}rcl@{}} H_{G_{i_{1}}, G_{i_{2}}}(\tau) = \left\{\!\!\!\begin{array}{lll} \ \frac{q^{n}-1}{t}, \ \ \ \text{if} \ d_{2}-d_{1}+t\tau_{1} \equiv 0 \ \text{mod} \ (q-1) \ \text{and}\ \tau_{2}=0 \\ \ \frac{q^{n-k}-1}{t}, \ \ \text{otherwise}. \end{array}\right. \end{array} $$

Since 1≤|d 2d 1|<q−1 and t|(q−1), there exist two FHSs \(G_{i^{\prime }_{1}}, G_{i^{\prime }_{2}} \in \mathcal {G}\) , whose periodic Hamming correlation \(H_{G_{i^{\prime }_{1}}, G_{i^{\prime }_{2}}}(\tau )\) can be given by

$$\begin{array}{@{}rcl@{}} H_{G_{i^{\prime}_{1}}, G_{i^{\prime}_{2}}}(\tau) = \left\{\!\!\!\begin{array}{lll} \ \frac{q^{n}-1}{t},\ \ \ \ \ \tau=W \\ \ \frac{q^{n-k}-1}{t}, \ \ \ \text{otherwise}. \end{array}\right. \end{array} $$

By summarizing the results of the above two cases, we have

$$\begin{array}{@{}rcl@{}} H_{G_{i_{1}}, G_{i_{2}}}(\tau) = \frac{q^{n-k}-1}{t} \end{array} $$

for 0<τ<W when i 1 = i 2, and for 0≤τ<W when i 1i 2. Thus, \(\mathcal {G}\) is a \((\frac {q^{n}-1}{t},q-1,q^{k},W-1,\frac {q^{n-k}-1}{t})\) LHZ-FHS set.

We then check the optimality of \(\mathcal {G}\) with respect to the Peng-Fan-Lee Bound,

$$\begin{array}{@{}rcl@{}} \varepsilon &\geq& \left\lceil\frac{((q-1)(W-1)+(q-1)-q^{k})\frac{q^{n}-1}{t}}{((q-1)(W-1)+(q-1)-1)q^{k}}\right\rceil \\ &=&\left\lceil\frac{q^{n-k}-1}{t}-\frac{q^{k}-1}{(q^{n}-2)q^{k}t}\right\rceil. \end{array} $$

Since

$$\begin{array}{@{}rcl@{}} 0< \frac{q^{k}-1}{(q^{n}-2)q^{k}t} <1, \end{array} $$

it follows that

$$\begin{array}{@{}rcl@{}} \varepsilon \geq \frac{q^{n-k}-1}{t}. \end{array} $$

According to Definition 2, \(\mathcal {G}\) is a \((\frac {q^{n}-1}{t},q-1,q^{k},W-1,\frac {q^{n-k}-1}{t})\) LHZ-FHS set with optimal maximum periodic Hamming correlation. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, H., Peng, D. & Parampalli, U. New sets of optimal low-hit-zone frequency-hopping sequences based on m-sequences. Cryptogr. Commun. 9, 511–522 (2017). https://doi.org/10.1007/s12095-016-0192-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-016-0192-7

Keywords

Mathematics Subject Classifications (2010)

Navigation