Skip to main content

Advertisement

Log in

Investigation of Calcium Oxide–Impregnated Zeolite Catalyst Toward Catalytic Pyrolysis of Oil Palm Empty Fruit Bunch: Bio-oil Yields, Characterizations, and Kinetic Study

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

This work investigated the in situ catalytic pyrolysis of oil palm empty fruit bunch using CaO-impregnated zeolite (CaO/HZSM-5) catalyst. An optimum point was obtained via central composite rotatable design at reaction temperature of 567.10 °C, catalyst loading of 3.22 wt%, and CaO loading of 1.25 wt%, with an expected bio-oil yield of 35.31 wt%. Validation runs’ experimental yield was 37.59 ± 1.74 wt%, indicating reliability of the condition. The impregnated catalyst was characterized, and CaO was observed to be successfully impregnated onto HZSM-5 with minor degradation on the catalyst structures. The bio-oil produced through catalytic pyrolysis had increased 16.102 wt% water content, and also lower acid content by 8.02%, and higher aromatic content by 18.86% as compared with non-catalytic pyrolysis, possibly contributed by the combined catalytic effect of CaO/HZSM-5 catalyst via deoxygenation and neutralization reactions. Kinetic study using Coats-Redfern method indicated the decrement of activation energy and frequency factor by 2.14% and 49.17%, respectively, at reaction order of three with addition of CaO/HZSM-5 catalyst. Similar reductions in activation energies in presence of CaO/HZSM-5 catalyst was observed in model-free methods, and the activation energies gradually increased with process conversion due to differences in valorization temperatures of hemicellulose (300 °C), cellulose (340 and 390 °C), and lignin (> 400 °C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article (and its supplementary information files).

References

  1. Ibarra-Gonzalez P, Rong B-G (2019) A review of the current state of biofuels production from lignocellulosic biomass using thermochemical conversion routes. Chin J Chem Eng 27:1523–1535. https://doi.org/10.1016/j.cjche.2018.09.018

    Article  CAS  Google Scholar 

  2. Ong HC, Chen W-H, Farooq A et al (2019) Catalytic thermochemical conversion of biomass for biofuel production: a comprehensive review. Renew Sustain Energ Rev 113:109266. https://doi.org/10.1016/j.rser.2019.109266

    Article  CAS  Google Scholar 

  3. Patel M, Zhang X, Kumar A (2016) Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: a review. Renew Sustain Energ Rev 53:1486–1499. https://doi.org/10.1016/j.rser.2015.09.070

    Article  CAS  Google Scholar 

  4. Chen X, Che Q, Li S et al (2019) Recent developments in lignocellulosic biomass catalytic fast pyrolysis: strategies for the optimization of bio-oil quality and yield. Fuel Process Technol 196:106180. https://doi.org/10.1016/j.fuproc.2019.106180

    Article  CAS  Google Scholar 

  5. Rahman MdM, Liu R, Cai J (2018) Catalytic fast pyrolysis of biomass over zeolites for high quality bio-oil – a review. Fuel Process Technol 180:32–46. https://doi.org/10.1016/j.fuproc.2018.08.002

    Article  CAS  Google Scholar 

  6. Terry LM, Wee MXJ, Chew JJ et al (2023) Co-pyrolysis of oil palm trunk and polypropylene: pyrolysis oil composition and formation mechanism. S Afr J Chem Eng 43:348–358. https://doi.org/10.1016/j.sajce.2022.12.001

    Article  Google Scholar 

  7. Terry LM, Wee MXJ, Chew JJ et al (2023) Catalytic co-pyrolysis of oil palm trunk and polypropylene with Ni–Mo/TiO2 and Ni/Al2O3: oil composition and mechanism. Environ Res 224:115500–115508. https://doi.org/10.1016/j.envres.2023.115550

    Article  CAS  Google Scholar 

  8. Sharma A, Pareek V, Zhang D (2015) Biomass pyrolysis—a review of modelling, process parameters and catalytic studies. Renew Sustain Energ Rev 50:1081–1096. https://doi.org/10.1016/j.rser.2015.04.193

    Article  CAS  Google Scholar 

  9. Du Z, Ma X, Li Y et al (2013) Production of aromatic hydrocarbons by catalytic pyrolysis of microalgae with zeolites: catalyst screening in a pyroprobe. Bioresour Technol 139:397–401. https://doi.org/10.1016/j.biortech.2013.04.053

    Article  CAS  PubMed  Google Scholar 

  10. Zhang H, Luo M, Xiao R et al (2014) Catalytic conversion of biomass pyrolysis-derived compounds with chemical liquid deposition (CLD) modified ZSM-5. Bioresour Technol 155:57–62. https://doi.org/10.1016/j.biortech.2013.12.085

    Article  CAS  PubMed  Google Scholar 

  11. Zhang H, Xiao R, Jin B et al (2013) Biomass catalytic pyrolysis to produce olefins and aromatics with a physically mixed catalyst. Bioresour Technol 140:256–262. https://doi.org/10.1016/j.biortech.2013.04.094

    Article  CAS  PubMed  Google Scholar 

  12. Liu S, Xie Q, Zhang B et al (2016) Fast microwave-assisted catalytic co-pyrolysis of corn stover and scum for bio-oil production with CaO and HZSM-5 as the catalyst. Bioresour Technol 204:164–170. https://doi.org/10.1016/j.biortech.2015.12.085

    Article  CAS  PubMed  Google Scholar 

  13. Veses A, Aznar M, Martínez I et al (2014) Catalytic pyrolysis of wood biomass in an auger reactor using calcium-based catalysts. Bioresour Technol 162:250–258. https://doi.org/10.1016/j.biortech.2014.03.146

    Article  CAS  PubMed  Google Scholar 

  14. Zheng Y, Tao L, Huang Y et al (2019) Improving aromatic hydrocarbon content from catalytic pyrolysis upgrading of biomass on a CaO/HZSM-5 dual-catalyst. J Anal Appl Pyrolysis 140:355–366. https://doi.org/10.1016/j.jaap.2019.04.014

    Article  CAS  Google Scholar 

  15. Rahman MM, Chai M, Sarker M et al (2020) Catalytic pyrolysis of pinewood over ZSM-5 and CaO for aromatic hydrocarbon: analytical Py-GC/MS study. J of the Energy Inst 93:425–435. https://doi.org/10.1016/j.joei.2019.01.014

    Article  CAS  Google Scholar 

  16. Yi L, Liu H, Li S et al (2019) Catalytic pyrolysis of biomass wastes over Org-CaO/Nano-ZSM-5 to produce aromatics: influence of catalyst properties. Bioresour Technol. https://doi.org/10.1016/j.biortech.2019.122186

    Article  PubMed  Google Scholar 

  17. García R, Pizarro C, Lavín AG, Bueno JL (2013) Biomass proximate analysis using thermogravimetry. Bioresour Technol 139:1–4. https://doi.org/10.1016/j.biortech.2013.03.197

    Article  CAS  PubMed  Google Scholar 

  18. Ait-Amir B, Pougnet P, El Hami A (2015) Meta-model development. Embed Mechatron Syst 2:151–179. https://doi.org/10.1016/b978-1-78548-014-0.50006-2

    Article  Google Scholar 

  19. Mazlan MAF, Uemura Y, Osman NB, Yusup S (2015) Characterizations of bio-char from fast pyrolysis of Meranti wood sawdust. J Phys Conf Ser 622:012054. https://doi.org/10.1088/1742-6596/622/1/012054

  20. Pérez-Maqueda LA, Sánchez-Jiménez PE, Criado JM (2005) Kinetic analysis of solid-state reactions: precision of the activation energy calculated by integral methods. Int J Chem Kinet 37:658–666. https://doi.org/10.1002/kin.20115

    Article  CAS  Google Scholar 

  21. Zhang X (2021) Applications of kinetic methods in thermal analysis: a review. Eng Sci 14:1–13

    CAS  Google Scholar 

  22. Liang J, Morgan HM, Liu Y et al (2017) Enhancement of bio-oil yield and selectivity and kinetic study of catalytic pyrolysis of rice straw over transition metal modified ZSM-5 catalyst. J Anal Appl Pyrolysis. https://doi.org/10.1016/j.jaap.2017.09.018

    Article  Google Scholar 

  23. Ro D, Kim Y-M, Lee I-G et al (2018) Bench scale catalytic fast pyrolysis of empty fruit bunches over low cost catalysts and HZSM-5 using a fixed bed reactor. J Clean Prod 176:298–303. https://doi.org/10.1016/j.jclepro.2017.12.075

    Article  CAS  Google Scholar 

  24. Chong YY, Thangalazhy-Gopakumar S, Ng HK et al (2019) Effect of oxide catalysts on the properties of bio-oil from in-situ catalytic pyrolysis of palm empty fruit bunch fiber. J Environ Manage 247:38–45. https://doi.org/10.1016/j.jenvman.2019.06.049

    Article  CAS  PubMed  Google Scholar 

  25. Habibi N, Dabbagh HA (2019) Mechanism study of the conversion of esters to high-octane-number aromatics over HZSM-5. Appl Organomet Chem 33:e4673. https://doi.org/10.1002/aoc.4673

  26. Liu B, France L, Wu C et al (2015) Methanol-to-hydrocarbons conversion over MoO3/H-ZSM-5 catalysts prepared via lower temperature calcination: a route to tailor the distribution and evolution of promoter Mo species, and their corresponding catalytic properties. Chem Sci 6:5152–5163. https://doi.org/10.1039/c5sc01825k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Habte L, Shiferaw N, Mulatu D et al (2019) Synthesis of nano-calcium oxide fromwaste eggshell by sol-gel method. Sustainability 11:3196–3206. https://doi.org/10.3390/su11113196

    Article  CAS  Google Scholar 

  28. Chen X, Chen Y, Yang H et al (2017) Fast pyrolysis of cotton stalk biomass using calcium oxide. Bioresour Technol 233:15–20. https://doi.org/10.1016/j.biortech.2017.02.070

    Article  CAS  PubMed  Google Scholar 

  29. Hu Y, Wang H, Lakshmikandan M et al (2021) Catalytic co-pyrolysis of seaweeds and cellulose using mixed ZSM-5 and MCM-41 for enhanced crude bio-oil production. J Therm Anal Calorim 143:827–842. https://doi.org/10.1007/s10973-020-09291-w

    Article  CAS  Google Scholar 

  30. Liu C, Wang H, Karim AM et al (2014) Catalytic fast pyrolysis of lignocellulosic biomass. Chem Soc Rev 43:7594–7623. https://doi.org/10.1039/c3cs60414d

    Article  CAS  PubMed  Google Scholar 

  31. Lim HY, Yusup S (2022) Chapter 2 - Technology to convert biomass to biooil: challenges and opportunity. In: Gurunathan B, Sahadevan R, Zakaria ZA (eds) Biofuels and Bioenergy. Elsevier, pp 25–40

    Chapter  Google Scholar 

  32. Arenas Castiblanco E, Montoya JH, Rincón GV et al (2022) A new approach to obtain kinetic parameters of corn cob pyrolysis catalyzed with CaO and CaCO3. Heliyon 8:e10195. https://doi.org/10.1016/j.heliyon.2022.e10195

  33. Liu C, Zhang B, Bian Y et al (2022) Synergistic effect and kinetic analysis of catalytic co-pyrolysis of waste cotton swabs and non-woven masks. J Anal Appl Pyrolysis 167:105677–105686. https://doi.org/10.1016/j.jaap.2022.105677

    Article  CAS  Google Scholar 

  34. Chong YY, Ng HK, Lee LY et al (2020) Kinetics and mechanisms for catalytic pyrolysis of empty fruit bunch fibre and cellulose with oxides. SN Appl Sci 2:1464–1478. https://doi.org/10.1007/s42452-020-03249-1

    Article  CAS  Google Scholar 

  35. Yeo JY, Chin BLF, Tan JK, Loh YS (2019) Comparative studies on the pyrolysis of cellulose, hemicellulose, and lignin based on combined kinetics. J of the Energy Inst 92:27–37. https://doi.org/10.1016/j.joei.2017.12.003

    Article  CAS  Google Scholar 

  36. Hu M, Chen Z, Wang S et al (2016) Thermogravimetric kinetics of lignocellulosic biomass slow pyrolysis using distributed activation energy model, Fraser-Suzuki deconvolution, and iso-conversional method. Energy Convers Manag 118:1–11. https://doi.org/10.1016/j.enconman.2016.03.058

    Article  CAS  Google Scholar 

  37. Mahmood H, Shakeel A, Abdullah A et al (2021) A comparative study on suitability of model-free and model-fitting kinetic methods to non-isothermal degradation of lignocellulosic materials. Polymers (Basel) 13:2504–2517. https://doi.org/10.3390/polym13152504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by fundings from Ministry of Higher Education, Malaysia, under HiCoE grant (cost centre: 015ME0-014) and Association of Southeast Asian Nations (ASEAN) under ASTIF grant (cost centre: 015ME0-058). This work was also supported in part by the Japan Science and Technology Agency (JST) under SICORP (Grant Number JPMJSC15H1/JPMJSC18E2) and the Japan Society for the Promotion of Science (JSPS) Bilateral Exchange Program (Open Partnership) between Universiti Teknologi PETRONAS, Malaysia, and Kumamoto University, Japan.

Author information

Authors and Affiliations

Authors

Contributions

Huei Yeong Lim: Conceptualization, methodology, software, formal analysis, investigation, writing (original draft), writing (review and editing), validation. Suzana Yusup: Conceptualization, methodology, writing (review and editing), validation, supervision. Menandro N. Acda: Methodology, writing—review and editing. Bridgid Lai Fui Chin: writing—review and editing—formal analysis. Elisabeth Rianawati: Writing—review and editing—formal analysis. Pornkamol Unrean: writing—review and editing, software. Chung Loong Yiin: Funding acquisition, data curation, writing—review and editing. Armando T. Quitain: Funding acquisition, writing—review and edittng. Suttichai Assabumrungrat: Project administration, writing—review and editing.

Corresponding author

Correspondence to Huei Yeong Lim.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 16 KB)

Supplementary file2 (PDF 192 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, H.Y., Yusup, S., Acda, M.N. et al. Investigation of Calcium Oxide–Impregnated Zeolite Catalyst Toward Catalytic Pyrolysis of Oil Palm Empty Fruit Bunch: Bio-oil Yields, Characterizations, and Kinetic Study. Bioenerg. Res. 17, 419–433 (2024). https://doi.org/10.1007/s12155-023-10618-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-023-10618-2

Keywords

Navigation