Skip to main content
Log in

The Mesoporous Porphyrinic Zirconium Metal-Organic Framework for Pipette-Tip Solid-Phase Extraction of Mercury from Fish Samples Followed by Cold Vapor Atomic Absorption Spectrometric Determination

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

In this study, the highly stable mesoporous porphyrinic zirconium metal-organic framework, namely PCN-222/MOF-545 (Zr-MOF), was prepared and used for pipette-tip solid-phase extraction of Hg(II). As a high-capacity sorbent, 4 mg of the Zr-MOF was placed into a conventional pipette tip and used, for the first time, for the fast extraction and preconcentration of mercury ions. For desorption, 50 μL of 10% HCl was used by 15 repeated aspirating/dispensing cycles, and Hg ions in elusion were measured by a cold vapor atomic absorption spectrometer. Affecting parameters on extraction efficiency were studied, and optimum conditions were established as amount of sorbent 2 mg, pH was adjusted to 5.0, the eluting volume was 15 μL, and extraction was performed on 1.8 mL of the sample. The optimal number of aspirating/dispensing cycles for extraction and desorption of analytes was found to be 10 and 15 cycles, respectively. The limit of detection of the method was found to be 20 ng L−1 with a relative standard deviation of ≤3.1% (for seven replicate analyses of 20 μg L−1 of mercury). Adsorption capacity and enrichment factor were 35.5 mg g−1 and 120-fold, respectively. The proposed method was successfully applied for the determination of Hg(II) ions in fish samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abolhasani J, Hosseinzadeh Khanmiri R, Babazadeh M, Ghorbani-Kalhor E, Edjlali L, Hassanpour A (2015) Determination of Hg(II) ions in sea food samples after extraction and preconcentration by novel Fe3O4@SiO2@polythiophene magnetic nanocomposite. Environ Monit Assess 187(9):1–11

    Article  Google Scholar 

  • Adlnasab L, Ebrahimzadeh H, Asgharinezhad AA, Aghdam MN, Dehghani A, Esmaeilpour S (2014) A preconcentration procedure for determination of ultra-trace mercury(II) in environmental samples employing continuous-flow cold vapor atomic absorption spectrometry. Food Anal Methods 7(3):616–628

    Article  Google Scholar 

  • Bagheri A, Taghizadeh M, Behbahani M, Akbar Asgharinezhad A, Salarian M, Dehghani A, Ebrahimzadeh H, Amini MM (2012) Synthesis and characterization of magnetic metal-organic framework (MOF) as a novel sorbent, and its optimization by experimental design methodology for determination of palladium in environmental samples. Talanta 99:132–139

    Article  CAS  Google Scholar 

  • Bhattacharjee S, Lee Y-R, Puthiaraj P, Cho S-M, Ahn W-S (2015) Metal–organic frameworks for catalysis. Catal Surv Jpn 19(4):203–222

    Article  CAS  Google Scholar 

  • Biesaga M, Pyrzyńska K, Trojanowicz M (2000) Porphyrins in analytical chemistry. A review Talanta 51(2):209–224

    Article  CAS  Google Scholar 

  • Bordin DCM, Alves MNR, De Campos EG, De Martinis BS (2016) Disposable pipette tips extraction: fundamentals, applications and state of the art. J Sep Scie 39(6):1168–1172

    Article  CAS  Google Scholar 

  • Cossa D, Sanjuan J, Cloud J, Stockwell PB, Corns WT (1995) Automated technique for mercury determination at sub-nanogram per litre levels in natural waters. J Anal Atom Spectrom 10(3):287–291

    Article  CAS  Google Scholar 

  • Dakova I, Karadjova I, Georgieva V, Georgiev G (2009) Ion-imprinted polymethacrylic microbeads as new sorbent for preconcentration and speciation of mercury. Talanta 78(2):523–529

    Article  CAS  Google Scholar 

  • Faraji M, Yamini Y, Rezaee M (2010) Extraction of trace amounts of mercury with sodium dodecyle sulphate-coated magnetite nanoparticles and its determination by flow injection inductively coupled plasma-optical emission spectrometry. Talanta 81(3):831–836

    Article  CAS  Google Scholar 

  • Feng D, Gu Z-Y, Li J-R, Jiang H-L, Wei Z, Zhou H-C (2012) Zirconium-metalloporphyrin PCN-222: mesoporous metal–organic frameworks with ultrahigh stability as biomimetic catalysts. Angew Chem Int Ed 51(41):10307–10310

    Article  CAS  Google Scholar 

  • Fumes BH, Silva MR, Andrade FN, Nazario CED, Lanças FM (2015) Recent advances and future trends in new materials for sample preparation. Trends Anal Chem; TrAC 71:9–25

    Article  CAS  Google Scholar 

  • Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science 341(6149):1230444

    Article  Google Scholar 

  • Ghorbani-Vaghei R, Davood A, Daliran S, Oveisi AR (2016) The UiO-66-SO3H metal-organic framework as a green catalyst for the facile synthesis of dihydro-2-oxypyrrole derivatives. RSC Adv 6(35):29182–29189

    Article  CAS  Google Scholar 

  • Guan H, Brewer WE, Garris ST, Morgan SL (2010) Disposable pipette extraction for the analysis of pesticides in fruit and vegetables using gas chromatography/mass spectrometry. J Chromatogr A 1217(12):1867–1874

    Article  CAS  Google Scholar 

  • Hasegawa C, Kumazawa T, Uchigasaki S, Lee X-P, Sato K, Terada M, Kurosaki K (2011) Determination of dextromethorphan in human plasma using pipette tip solid-phase extraction and gas chromatography–mass spectrometry. Anal Bioanal Chem 401(7):2215–2223

    Article  CAS  Google Scholar 

  • He C, Lu K, Liu D, Lin W (2014) Nanoscale metal–organic frameworks for the co-delivery of cisplatin and pooled sirnas to enhance therapeutic efficacy in drug-resistant ovarian cancer cells. J Am Chem Soc 136(14):5181–5184

    Article  CAS  Google Scholar 

  • Howarth AJ, Liu Y, Hupp JT, Farha OK (2015a) Metal-organic frameworks for applications in remediation of oxyanion/cation-contaminated water. CrystEngComm 17(38):7245–7253

    Article  CAS  Google Scholar 

  • Howarth AJ, Katz MJ, Wang TC, Platero-Prats AE, Chapman KW, Hupp JT, Farha OK (2015b) High efficiency adsorption and removal of selenate and selenite from water using metal-organic frameworks. J Am Chem Soc 137(23):7488–7494

    Article  CAS  Google Scholar 

  • Jeong E-Y, Ansari MB, Park S-E (2011) Aerobic Baeyer–Villiger oxidation of cyclic ketones over metalloporphyrins bridged periodic mesoporous organosilica. ACS Catal 1(8):855–863

    Article  CAS  Google Scholar 

  • Kaykhaii M, Yahyavi H, Hashemi M, Khoshroo MR (2016) A simple graphene-based pipette tip solid-phase extraction of malondialdehyde from human plasma and its determination by spectrofluorometry. Anal Bioanal Chem 408(18):4907–4915

    Article  CAS  Google Scholar 

  • Ke F, Qiu L-G, Yuan Y-P, Peng F-M, Jiang X, Xie A-J, Shen Y-H, Zhu J-F (2011) Thiol-functionalization of metal-organic framework by a facile coordination-based postsynthetic strategy and enhanced removal of Hg2+ from water. J Hazard Mater 196:36–43

    Article  CAS  Google Scholar 

  • Khan NA, Hasan Z, Jhung SH (2013) Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): a review. J Hazard Mater 244–245:444–456

    Article  Google Scholar 

  • Krawczyk M, Stanisz E (2016) Ultrasound-assisted dispersive micro solid-phase extraction with nano-TiO2 as adsorbent for the determination of mercury species. Talanta 161:384–391

    Article  CAS  Google Scholar 

  • Kreno LE, Leong K, Farha OK, Allendorf M, Van Duyne RP, Hupp JT (2012) Metal–organic framework materials as chemical sensors. Chem Rev 112(2):1105–1125

    Article  CAS  Google Scholar 

  • Kumar P, Deep A, Kim K-H (2015) Metal organic frameworks for sensing applications. Trac-Trends Anal Chem 73:39–53

    Article  CAS  Google Scholar 

  • Kumazawa T, Hasegawa C, Lee X-P, Marumo A, Shimmen N, Ishii A, Seno H, Sato K (2006) Pipette tip solid-phase extraction and gas chromatography-mass spectrometry for the determination of mequitazine in human plasma. Talanta 70(2):474–478

    Article  CAS  Google Scholar 

  • Li B, Wen H-M, Zhou W, Chen B (2014) Porous metal-organic frameworks for gas storage and separation: what, how, and why? J Phys Chem Lett 5(20):3468–3479

    Article  CAS  Google Scholar 

  • Liang P, Yu J, Yang E, Mo Y (2015) Determination of mercury in food and water samples by displacement-dispersive liquid-liquid microextraction coupled with graphite furnace atomic absorption spectrometry. Food Anal Methods 8(1):236–242

    Article  Google Scholar 

  • Liu Y, Moon S-Y, Hupp JT, Farha OK (2015) Dual-function metal-organic framework as a versatile catalyst for detoxifying chemical warfare agent simulants. ACS Nano 9(12):12358–12364

    Article  CAS  Google Scholar 

  • Morris W, Volosskiy B, Demir S, Gándara F, McGrier PL, Furukawa H, Cascio D, Stoddart JF, Yaghi OM (2012) Synthesis, structure, and metalation of two new highly porous zirconium metal-organic frameworks. Inorg Chem 51(12):6443–6445

    Article  CAS  Google Scholar 

  • Oveisi AR, Zhang K, Khorramabadi-zad A, Farha OK, Hupp JT (2015) Stable and catalytically active iron porphyrin-based porous organic polymer: activity as both a redox and Lewis acid catalyst. Sci Rep 5:10621–10628

    Article  CAS  Google Scholar 

  • Oveisi AR, Khorramabadi-zad A, Daliran S (2016) Iron-based metal-organic framework, Fe(BTC): an effective dual-functional catalyst for oxidative cyclization of bisnaphthols and tandem synthesis of quinazolin-4(3H)-ones. RSC Adv 6(2):1136–1142

    Article  CAS  Google Scholar 

  • Panichev NA, Panicheva SE (2015) Determination of total mercury in fish and sea products by direct thermal decomposition atomic absorption spectrometry. Food Chem 166:432–441

    Article  CAS  Google Scholar 

  • Pirsaheb M, Fattahi N (2015) Trace determination of heavy metals in farmed trout fish using dispersive liquid–liquid microextraction based on solidification of floating organic drop and graphite furnace atomic absorption spectrometry. Anal Methods 7:6266–6273

    Article  CAS  Google Scholar 

  • Potka-Wasylka J, Szczepańska N, de la Guardia M, Namienik J (2016) Modern trends in solid phase extraction: new sorbent media. Trends Anal. Chem.; TrAC 77:23–43

    Article  Google Scholar 

  • Rezaei Kahkha MR, Kaykhaii M, Afarani MS, Sepehri Z (2016) Determination of mefenamic acid in urine and pharmaceutical samples by HPLC after pipette-tip solid phase microextraction using zinc sulfide modified carbon nanotubes. Anal Methods 8(30):5978–5983

    Article  CAS  Google Scholar 

  • S. Lahrich S, Manoun M, El Mhammedi MA (2016) Catalytic effect of potassium in Na1-xKxCdPb3(PO4)3 to detect mercury (II) in fish and seawater using a carbon paste electrode. Talanta 149:158–167

    Article  Google Scholar 

  • Shukla A, Majors RE (2005) Micropipette tip-based sample preparation for bioanalysis. LC GC Eur 18(12):650–661

    CAS  Google Scholar 

  • Sohrabi MR (2014) Preconcentration of mercury(II) using a thiol-functionalized metal-organic framework nanocomposite as a sorbent. Microchim Acta 181(3):435–444

    Article  CAS  Google Scholar 

  • Son H-J, Jin S, Patwardhan S, Wezenberg SJ, Jeong NC, So M, Wilmer CE, Sarjeant AA, Schatz GC, Snurr RQ, Farha OK, Wiederrecht GP, Hupp JT (2013) Light-harvesting and ultrafast energy migration in porphyrin-based metal–organic frameworks. J Am Chem Soc 135(2):862–869

    Article  CAS  Google Scholar 

  • Talin AA, Centrone A, Ford AC, Foster ME, Stavila V, Haney P, Kinney RA, Szalai V, El Gabaly F, Yoon HP, Léonard F, Allendorf MD (2014) Tunable electrical conductivity in metal-organic framework thin-film devices. Science 343(6166):66–69

    Article  CAS  Google Scholar 

  • Wang C, Liu X, Chen JP, Li K (2015) Superior removal of arsenic from water with zirconium metal-organic framework UiO-66. Sci Rep 5:16613–16623

    Article  CAS  Google Scholar 

  • Wang B, Lv X-L, Feng D, Xie L-H, Zhang J, Li M, Xie Y, Li J-R, Zhou H-C (2016) Highly stable Zr(IV)-based metal–organic frameworks for the detection and removal of antibiotics and organic explosives in water. J Am Chem Soc 138(19):6204–6216

    Article  CAS  Google Scholar 

  • WHO (1990) Environmental health criteria. Methylmercury. vol. 101, Geneva, Switzerland. Available at: http://www.inchem.org/documents/ehc/ehc/ehc101.htm

  • Yuan C-G, Lin K, Chang A (2010) Determination of trace mercury in environmental samples by cold vapor atomic fluorescence spectrometry after cloud point extraction. Microchim Acta 171(3):313–319

    Article  CAS  Google Scholar 

  • Zhai Y, Duan S, He Q, Yang X, Han Q (2010) Solid phase extraction and preconcentration of trace mercury(II) from aqueous solution using magnetic nanoparticles doped with 1,5-diphenylcarbazide. Microchim Acta 169(3):353–360

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Reza Rezaei Kahkha or Ali Reza Oveisi.

Ethics declarations

Conflict of Interest

Mohammad Reza Rezaei Kahkha declares that he has no conflict of interest. Saba Daliran declares that she has no conflict of interest. Ali Reza Oveisi declares that he has no conflict of interest. Massoud Kaykhaii declares that he has no conflict of interest. Zahra Sepehri declares that she has no conflict of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Informed Consent

Informed consent is not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei Kahkha, M.R., Daliran, S., Oveisi, A.R. et al. The Mesoporous Porphyrinic Zirconium Metal-Organic Framework for Pipette-Tip Solid-Phase Extraction of Mercury from Fish Samples Followed by Cold Vapor Atomic Absorption Spectrometric Determination. Food Anal. Methods 10, 2175–2184 (2017). https://doi.org/10.1007/s12161-016-0786-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-016-0786-x

Keywords

Navigation