Skip to main content

Advertisement

Log in

Introduction of the T315I gatekeeper mutation of BCR/ABL1 into a Philadelphia chromosome-positive lymphoid leukemia cell line using the CRISPR/Cas9 system

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Imatinib and second-generation tyrosine kinase inhibitors (TKIs) have dramatically improved the prognosis of Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL). However, overcoming TKI resistance due to the T315I gatekeeper mutation of BCR/ABL1 is crucial for further improving the prognosis. The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system is appropriate for establishing a human model of Ph+ ALL with the T315I mutation, because it can induce specific mutations via homologous recombination (HR) repair in cells with intact endogenous HR pathway. Here we used CRISPR/Cas9 to introduce the T315I mutation into the Ph+ lymphoid leukemia cell line KOPN55bi, which appeared to have an active HR pathway based on its resistance to a poly (ADP-Ribose) polymerase-1 inhibitor. Single-guide RNA targeting at codon 315 and single-strand oligodeoxynucleotide containing ACT to ATT nucleotide transition at codon 315 were electroporated with recombinant Cas9 protein. Dasatinib-resistant sublines were obtained after one-month selection with the therapeutic concentration of dasatinib, leading to T315I mutation acquisition through HR. T315I-acquired sublines were highly resistant to imatinib and second-generation TKIs but moderately sensitive to the therapeutic concentration of ponatinib. This authentic human model is helpful for developing new therapeutic strategies overcoming TKI resistance in Ph+ ALL due to T315I mutation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Faderl S, Kantarjian HM, Talpaz M, Estrov Z. Clinical significance of cytogenetic abnormalities in adult acute lymphoblastic leukemia. Blood. 1998;91(11):3995–4019.

    Article  CAS  Google Scholar 

  2. Schlieben S, Borkhardt A, Reinisch I, Ritterbach J, Janssen JW, Ratei R, et al. Incidence and clinical outcome of children with BCR/ABL-positive acute lymphoblastic leukemia (ALL). A prospective RT-PCR study based on 673 patients enrolled in the German pediatric multicenter therapy trials ALL-BFM-90 and CoALL-05-92. Leukemia. 1996;10(6):957–63.

    CAS  PubMed  Google Scholar 

  3. Wassmann B, Pfeifer H, Goekbuget N, Beelen DW, Beck J, Stelljes M, et al. Alternating versus concurrent schedules of imatinib and chemotherapy as front-line therapy for Philadelphia-positive acute lymphoblastic leukemia (Ph+ALL). Blood. 2006;108(5):1469–77. https://doi.org/10.1182/blood-2005-11-4386.

    Article  CAS  PubMed  Google Scholar 

  4. Abou Dalle I, Jabbour E, Short NJ, Ravandi F. Treatment of Philadelphia chromosome-positive acute lymphoblastic leukemia. Curr Treat Options Oncol. 2019;20(1):4. https://doi.org/10.1007/s11864-019-0603-z.

    Article  PubMed  Google Scholar 

  5. Savage DG, Antman KH. Imatinib mesylate—a new oral targeted therapy. N Engl J Med. 2002;346(9):683–93. https://doi.org/10.1056/NEJMra013339.

    Article  CAS  PubMed  Google Scholar 

  6. Soverini S, De Benedittis C, Papayannidis C, Paolini S, Venturi C, Iacobucci I, et al. Drug resistance and BCR-ABL kinase domain mutations in Philadelphia chromosome–positive acute lymphoblastic leukemia from the imatinib to the second-generation tyrosine kinase inhibitor era: the main changes are in the type of mutations, but not in the frequency of mutation involvement. Cancer. 2014;120(7):1002–9. https://doi.org/10.1002/cncr.28522.

    Article  CAS  PubMed  Google Scholar 

  7. Weisberg E, Manley P, Mestan J, Cowan-Jacob S, Ray A, Griffin JD. AMN107 (nilotinib): a novel and selective inhibitor of BCR-ABL. Br J Cancer. 2006;94(12):1765–9. https://doi.org/10.1038/sj.bjc.6603170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kim DY, Joo YD, Lim SN, Kim SD, Lee JH, Lee JH, et al. Nilotinib combined with multiagent chemotherapy for newly diagnosed Philadelphia-positive acute lymphoblastic leukemia. Blood. 2015;126(6):746–56. https://doi.org/10.1182/blood-2015-03-636548.

    Article  CAS  PubMed  Google Scholar 

  9. Ottmann O, Dombret H, Martinelli G, Simonsson B, Guilhot F, Larson RA, et al. Dasatinib induces rapid hematologic and cytogenetic responses in adult patients with Philadelphia chromosome–positive acute lymphoblastic leukemia with resistance or intolerance to imatinib: interim results of a phase 2 study. Blood. 2007;110(7):2309–15. https://doi.org/10.1182/blood-2007-02-073528.

    Article  CAS  PubMed  Google Scholar 

  10. Shah NP, Tran C, Lee FY, Chen P, Norris D, Sawyers CL. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science (New York, NY). 2004;305(5682):399–401. https://doi.org/10.1126/science.1099480.

    Article  CAS  Google Scholar 

  11. Rousselot P, Coudé MM, Gokbuget N, Gambacorti Passerini C, Hayette S, Cayuela J-M, et al. Dasatinib and low-intensity chemotherapy in elderly patients with Philadelphia chromosome-positive ALL. Blood. 2016;128(6):774–82. https://doi.org/10.1182/blood-2016-02-700153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Warmuth M, Kim S, Gu XJ, Xia G, Adrian F. Ba/F3 cells and their use in kinase drug discovery. Curr Opin Oncol. 2007;19(1):55–60. https://doi.org/10.1097/CCO.0b013e328011a25f.

    Article  CAS  PubMed  Google Scholar 

  13. Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB. Proliferating cells express mRNAs with shortened 3’ untranslated regions and fewer microRNA target sites. Science (New York, NY). 2008;320(5883):1643–7. https://doi.org/10.1126/science.1155390.

    Article  CAS  Google Scholar 

  14. Mayr C, Bartel DP. Widespread shortening of 3’UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell. 2009;138(4):673–84. https://doi.org/10.1016/j.cell.2009.06.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bueno MJ, de Castro IP, de Cedrón MG, Santos J, Calin GA, Cigudosa JC, et al. Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression. Cancer Cell. 2008;13(6):496–506. https://doi.org/10.1016/j.ccr.2008.04.018.

    Article  CAS  PubMed  Google Scholar 

  16. Lee TS, Ma W, Zhang X, Giles F, Cortes J, Kantarjian H, et al. BCR-ABL alternative splicing as a common mechanism for imatinib resistance: evidence from molecular dynamics simulations. Mol Cancer Ther. 2008;7(12):3834–41. https://doi.org/10.1158/1535-7163.mct-08-0482.

    Article  CAS  PubMed  Google Scholar 

  17. Hirase C, Maeda Y, Takai S, Kanamaru A. Hypersensitivity of Ph-positive lymphoid cell lines to rapamycin: Possible clinical application of mTOR inhibitor. Leuk Res. 2009;33(3):450–9. https://doi.org/10.1016/j.leukres.2008.07.023.

    Article  CAS  PubMed  Google Scholar 

  18. Hekmatshoar Y, Ozkan T, Altinok Gunes B, Bozkurt S, Karadag A, Karabay AZ, et al. Characterization of imatinib-resistant K562 cell line displaying resistance mechanisms. Cell Mol Biol (Noisy-le-grand). 2018;64(6):23–30.

    Article  Google Scholar 

  19. Mahon FX, Belloc F, Lagarde V, Chollet C, Moreau-Gaudry F, Reiffers J, et al. MDR1 gene overexpression confers resistance to imatinib mesylate in leukemia cell line models. Blood. 2003;101(6):2368–73. https://doi.org/10.1182/blood.V101.6.2368.

    Article  CAS  PubMed  Google Scholar 

  20. Mahon FX, Deininger MW, Schultheis B, Chabrol J, Reiffers J, Goldman JM, et al. Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571: diverse mechanisms of resistance. Blood. 2000;96(3):1070–9.

    Article  CAS  Google Scholar 

  21. Scappini B, Gatto S, Onida F, Ricci C, Divoky V, Wierda WG, et al. Changes associated with the development of resistance to imatinib (STI571) in two leukemia cell lines expressing p210 Bcr/Abl protein. Cancer. 2004;100(7):1459–71. https://doi.org/10.1002/cncr.20131.

    Article  CAS  PubMed  Google Scholar 

  22. Yuan H, Wang Z, Gao C, Chen W, Huang Q, Yee JK, et al. BCR-ABL gene expression is required for its mutations in a novel KCL-22 cell culture model for acquired resistance of chronic myelogenous leukemia. J Biol Chem. 2010;285(7):5085–96. https://doi.org/10.1074/jbc.M109.039206.

    Article  CAS  PubMed  Google Scholar 

  23. Tang C, Schafranek L, Watkins DB, Parker WT, Moore S, Prime JA, et al. Tyrosine kinase inhibitor resistance in chronic myeloid leukemia cell lines: investigating resistance pathways. Leuk Lymphoma. 2011;52(11):2139–47. https://doi.org/10.3109/10428194.2011.591013.

    Article  CAS  PubMed  Google Scholar 

  24. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science (New York, NY). 2013;339(6121):819–23. https://doi.org/10.1126/science.1231143.

    Article  CAS  Google Scholar 

  25. Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol. 2015;33:538. https://doi.org/10.1038/nbt.3190. https://www.nature.com/articles/nbt.3190#supplementary-information.

  26. Nieborowska-Skorska M, Sullivan K, Dasgupta Y, Podszywalow-Bartnicka P, Hoser G, Maifrede S, et al. Gene expression and mutation-guided synthetic lethality eradicates proliferating and quiescent leukemia cells. J Clin Investig. 2017;127(6):2392–406. https://doi.org/10.1172/JCI90825.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Slupianek A, Dasgupta Y, Ren S-Y, Gurdek E, Donlin M, Nieborowska-Skorska M, et al. Targeting RAD51 phosphotyrosine-315 to prevent unfaithful recombination repair in BCR-ABL1 leukemia. Blood. 2011;118(4):1062–8. https://doi.org/10.1182/blood-2010-09-307256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tamai M, Inukai T, Kojika S, Abe M, Kagami K, Harama D, et al. T315I mutation of BCR-ABL1 into human Philadelphia chromosome-positive leukemia cell lines by homologous recombination using the CRISPR/Cas9 system. Sci Rep. 2018;8(1):9966. https://doi.org/10.1038/s41598-018-27767-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434(7035):917–21. https://doi.org/10.1038/nature03445.

    Article  CAS  PubMed  Google Scholar 

  30. Nickoloff JA, Jones D, Lee S-H, Williamson EA, Hromas R. Drugging the cancers addicted to DNA repair. J Natl Cancer Inst. 2017;109(11):djx059. https://doi.org/10.1093/jnci/djx059.

    Article  CAS  PubMed Central  Google Scholar 

  31. Uno K, Inukai T, Kayagaki N, Goi K, Sato H, Nemoto A, et al. TNF-related apoptosis-inducing ligand (TRAIL) frequently induces apoptosis in Philadelphia chromosome–positive leukemia cells. Blood. 2003;101(9):3658–67. https://doi.org/10.1182/blood-2002-06-1770.

    Article  CAS  PubMed  Google Scholar 

  32. Kano Y, Akutsu M, Tsunoda S, Mano H, Sato Y, Honma Y, et al. In vitro cytotoxic effects of a tyrosine kinase inhibitor STI571 in combination with commonly used antileukemic agents. Blood. 2001;97(7):1999–2007. https://doi.org/10.1182/blood.V97.7.1999.

    Article  CAS  PubMed  Google Scholar 

  33. Rousselot P, Boucher S, Etienne G, Nicolini FE, Chauzit E, Makhoul PC, et al. Pharmacokinetics of dasatinib as a first line therapy in newly diagnosed CML patients (OPTIM dasatinib trial): correlation with safety and response. Blood. 2010;116(21):3432. https://doi.org/10.1182/blood.V116.21.3432.3432.

    Article  Google Scholar 

  34. Takahashi N, Miura M, Scott SA, Niioka T, Sawada K. Pharmacokinetics of dasatinib for Philadelphia-positive acute lymphocytic leukemia with acquired T315I mutation. J Hematol Oncol. 2012;5:23. https://doi.org/10.1186/1756-8722-5-23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yilmaz M, Abaza Y, Jabbour E. Selecting the best frontline treatment in chronic myeloid leukemia. Curr Hematol Malig Rep. 2015;10(2):145–57. https://doi.org/10.1007/s11899-015-0254-5.

    Article  PubMed  PubMed Central  Google Scholar 

  36. O’Hare T, Shakespeare WC, Zhu X, Eide CA, Rivera VM, Wang F, et al. AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell. 2009;16(5):401–12. https://doi.org/10.1016/j.ccr.2009.09.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cortes JE, Kim DW, Pinilla-Ibarz J, le Coutre P, Paquette R, Chuah C, et al. A phase 2 trial of ponatinib in philadelphia chromosome-positive leukemias. N Engl J Med. 2013;369(19):1783–96. https://doi.org/10.1056/NEJMoa1306494.

    Article  CAS  PubMed  Google Scholar 

  38. Okabe S, Tauchi T, Ohyashiki K. Establishment of a new Philadelphia chromosome-positive acute lymphoblastic leukemia cell line (SK-9) with T315I mutation. Exp Hematol. 2010;38(9):765–72. https://doi.org/10.1016/j.exphem.2010.04.017.

    Article  CAS  PubMed  Google Scholar 

  39. Hantschel O, Rix U, Superti-Furga G. Target spectrum of the BCR-ABL inhibitors imatinib, nilotinib and dasatinib. Leuk Lymphoma. 2008;49(4):615–9. https://doi.org/10.1080/10428190801896103.

    Article  CAS  PubMed  Google Scholar 

  40. Mahon FX, Hayette S, Lagarde V, Belloc F, Turcq B, Nicolini F, et al. Evidence that resistance to nilotinib may be due to BCR-ABL, Pgp, or Src kinase overexpression. Can Res. 2008;68(23):9809–16. https://doi.org/10.1158/0008-5472.can-08-1008.

    Article  CAS  Google Scholar 

  41. Noetzli J, Gavillet M, Masouridi-Levrat S, Duchosal M, Spertini O. T315I clone selection in a Ph+ all patient under low-dose ponatinib maintenance. Clin Case Rep. 2017;5(8):1320–2. https://doi.org/10.1002/ccr3.1032.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Numbers JP19H03615 and AMED under Grant Number JP19ck0106253.

Author information

Authors and Affiliations

Authors

Contributions

TTTN performed research, analyzed data, and wrote the manuscript; MT, DH, and TI suggested the concept of the study and designed the study; KK, SK, AW, KA, and KG analyzed data. TI revised the manuscript and supervised the overall study process.

Corresponding author

Correspondence to Takeshi Inukai.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.T.T., Tamai, M., Harama, D. et al. Introduction of the T315I gatekeeper mutation of BCR/ABL1 into a Philadelphia chromosome-positive lymphoid leukemia cell line using the CRISPR/Cas9 system. Int J Hematol 116, 534–543 (2022). https://doi.org/10.1007/s12185-022-03369-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-022-03369-x

Keywords

Navigation