Skip to main content
Log in

Effects of PEG-Based Thermoresponsive Polymer Brushes on Fibroblast Spreading and Gene Expression

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

The use of thermoresponsive polymer (TRP) substrates, such as PNIPAM, has become a valuable tool for the gentle detachment of cells from their culture surface while retaining cell–cell and cell–matrix contacts. P(MEO2MA-co-OEGMA) substrates (PMO) are an alternative to PNIPAM and offer a tunable LCST, but remain relatively uncharacterized as cell culture substrates. To evaluate the cell–material interaction on these TRPs, L-929 fibroblasts were cultured on PMO substrates with a LCST of 34 °C and differences in cell attachment, morphology, and gene expression were compared to culture on PNIPAM or tissue culture plastic over 48 h. Since thermal switching of TRP substrates is reversible, the cellular response was also examined as a function of repeated substrate use (i.e., “cycling”). There was an observed lag in cell attachment and spreading over time on PMO substrates that was not observed on PNIPAM surfaces or after repeated cycling. Preconditioning PMO surfaces by cycling in serum-containing media without cells resulted in enhanced initial attachment rates. Gene expression for markers FN1, IL-6, Bcl-2, and Dusp2 were up-regulated on native PMO substrates compared to PNIPAM, but were attenuated by cycling. There were no differences in expression for any gene between native and cycled PNIPAM substrates. Results demonstrate that biocompatibility of PMO surfaces is enhanced with successive use in culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

MEO2MA:

2-(2-Methoxyethoxy)ethyl methacrylate

OEGMA:

Oligo(ethylene glycol) methacrylate

PMO:

P(MEO2MA-co-OEGMA)

LCST:

Lower critical solution temperature

TCP:

Tissue culture plastic

PNIPAM:

Poly(N-isopropylacrylamide)

PEG:

Poly(ethylene glycol)

PEI:

Poly(ethyleneimine)

PSS:

Poly(styrene sulfonate)

PDADMAC:

Poly(diallyl dimethyl ammonium chloride)

PCR:

Polymerase chain reaction

TRP:

Thermoresponsive polymer

References

  1. Adams, J. M., and S. Cory. The Bcl-2 protein family: arbiters of cell survival. Science 281:1322–1326, 1998.

    Article  Google Scholar 

  2. Allen, L. T., M. Tosetto, I. S. Miller, D. P. O’Connor, S. C. Penney, I. Lynch, A. K. Keenan, S. R. Pennington, K. A. Dawson, and W. M. Gallagher. Surface-induced changes in protein adsorption and implications for cellular phenotypic responses to surface interaction. Biomaterials 27:3096–3108, 2006.

    Article  Google Scholar 

  3. Canavan, H. E., X. H. Cheng, D. J. Graham, B. D. Ratner, and D. G. Castner. Surface characterization of the extracellular matrix remaining after cell detachment from a thermoresponsive polymer. Langmuir 21:1949–1955, 2005.

    Article  Google Scholar 

  4. Canavan, H. E., D. J. Graham, X. H. Cheng, B. D. Ratner, and D. G. Castner. Comparison of native extracellular matrix with adsorbed protein films using secondary ion mass spectrometry. Langmuir 23:50–56, 2007.

    Article  Google Scholar 

  5. Chen, C. S., M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber. Geometric control of cell life and death. Science 276:1425–1428, 1997.

    Article  Google Scholar 

  6. Cheng, X., H. E. Canavan, D. J. Graham, D. G. Castner, and B. D. Ratner. Temperature dependent activity and structure of adsorbed proteins on plasma polymerized N-isopropyl acrylamide. Biointerphases 1:61–72, 2006.

    Article  Google Scholar 

  7. Cheng, X. H., H. E. Canavan, M. J. Stein, J. R. Hull, S. J. Kweskin, M. S. Wagner, G. A. Somorjai, D. G. Castner, and B. D. Ratner. Surface chemical and mechanical properties of plasma-polymerized N-isopropylacrylamide. Langmuir 21:7833–7841, 2005.

    Article  Google Scholar 

  8. Chrzanowska-Wodnicka, M., and K. J. Burridge. Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J. Cell Biol. 133:1403–1415, 1996.

    Article  Google Scholar 

  9. Cole, M. A., N. H. Voelcker, H. Thissen, and H. J. Griesser. Stimuli-responsive interfaces and systems for the control of protein-surface and cell–surface interactions. Biomaterials 30:1827–1850, 2009.

    Article  Google Scholar 

  10. Cooperstein, M. A., and H. E. Canavan. Biological cell detachment from poly(N-isopropyl acrylamide) and its applications. Langmuir 26:7695–7707, 2010.

    Article  Google Scholar 

  11. Discher, D. E., P. Janmey, and Y. Wang. Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143, 2005.

    Article  Google Scholar 

  12. Duerksen-Hughes, P. J., J. Yang, and O. Ozcan. p53 induction as a genotoxic test for twenty-five chemicals undergoing in vivo carcinogenicity testing. Environ. Health Perspect. 107:805–812, 1999.

    Article  Google Scholar 

  13. Fitzpatrick, L. E., J. W. Y. Chan, and M. V. Sefton. On the mechanism of poly(methacrylic acid -co- methyl methacrylate)-induced angiogenesis: gene expression analysis of dTHP-1 cells. Biomaterials 32:8957–8967, 2011.

    Article  Google Scholar 

  14. Galaev, I. Y., and B. Mattiasson. ‘Smart’ polymers and what they could do in biotechnology and medicine. Trends Biotech. 17:335–340, 1999.

    Article  Google Scholar 

  15. Garcia, A. J., P. Ducheyne, and D. Boettiger. Cell adhesion strength increases linearly with adsorbed fibronectin surface density. Tissue Eng. 3:197–206, 1997.

    Article  Google Scholar 

  16. Gil, E. S., and S. M. Hudson. Stimuli-responsive polymers and their bioconjugates. Prog. Polym. Sci. 29:1173–1222, 2004.

    Article  Google Scholar 

  17. Gurkan, U. A., T. Anand, H. Tas, D. Elkan, A. Akay, H. Keles, and U. Demirci. Controlled viable release of selectively captured label-free cells in microchannels. Lab Chip 11:3979–3989, 2011.

    Article  Google Scholar 

  18. Harimoto, M., M. Yamato, M. Hirose, C. Takahashi, Y. Isoi, A. Kikuchi, and T. Okano. Novel approach for achieving double-layered cell sheets co-culture: overlaying endothelial cell sheets onto monolayer hepatocytes utilizing temperature-responsive culture dishes. J. Biomed. Mater. Res. 62:464–470, 2002.

    Article  Google Scholar 

  19. Heinrich, P. C., I. Behrmann, S. Haan, H. M. Hermanns, G. Muller-Newen, and F. Schaper. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem. J. 374:1–20, 2003.

    Article  Google Scholar 

  20. Ignatius, A. A., and L. E. Claes. In vitro biocompatibility of bioresorbable polymers: poly(l,dl-lactide) and poly(l-lactide-co-glycolide). Biomaterials 17:831–839, 1996.

    Article  Google Scholar 

  21. Ito, Y. Surface micropatterning to regulate cell functions. Biomaterials 20:2333–2342, 1999.

    Article  Google Scholar 

  22. Iuliano, D. J., S. S. Saavedra, and G. A. Truskey. Effect of the conformation and orientation of adsorbed Fibronectin on endothelial-cell spreading and the strength of adhesion. J. Biomed. Mater. Res. 27:1103–1113, 1993.

    Article  Google Scholar 

  23. Jones, S. A., S. Horiuchi, N. Topley, N. Yamamoto, and G. M. Fuller. The soluble interleukin 6 receptor: mechanisms of production and implications in disease. FASEB J. 15:43–58, 2001.

    Article  Google Scholar 

  24. Keselowsky, B. G., D. M. Collard, and A. J. Garcia. Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion. J. Biomed. Mater. Res. A 66:247–259, 2003.

    Article  Google Scholar 

  25. Kingshott, P., and H. J. Griesser. Surfaces that resist bioadhesion. Curr. Opin. Solid State Mater. Sci. 4:403–412, 1999.

    Article  Google Scholar 

  26. Kushida, A., M. Yamato, A. Kikuchi, and T. J. Okano. Two-dimensional manipulation of differentiated Madin–Darby canine kidney (MDCK) cell sheets: the noninvasive harvest from temperature-responsive culture dishes and transfer to other surfaces. Biomed. Mater. Res. 54:37–46, 2001.

    Article  Google Scholar 

  27. Kushida, A., M. Yamato, C. Konno, A. Kikuchi, Y. Sakurai, and T. J. Okano. Decrease in culture temperature releases monolayer endothelial cell sheets together with deposited fibronectin matrix from temperature-responsive culture surfaces. Biomed. Mater. Res. 45:355–362, 1999.

    Article  Google Scholar 

  28. Liu, R. X., M. Fraylich, and B. R. Saunders. Thermoresponsive copolymers: from fundamental studies to applications. Colloid Polym. Sci. 287:627–643, 2009.

    Article  Google Scholar 

  29. Lutz, J. F., O. Akdemir, and A. Hoth. Point by point comparison of two thermosensitive polymers exhibiting a similar LCST: is the age of poly(NIPAM) over? J. Am. Chem. Soc. 128:13046–13047, 2006.

    Article  Google Scholar 

  30. Lutz, J. F., and A. Hoth. Preparation of ideal PEG analogues with a tunable thermosensitivity by controlled radical copolymerization of 2-(2-methoxyethoxy)ethyl methacrylate and oligo(ethylene glycol) methacrylate. Macromolecules 39:893–896, 2006.

    Article  Google Scholar 

  31. Malmstadt, N., A. S. Hoffman, and P. S. Stayton. “Smart” mobile affinity matrix for microfluidic immunoassays. Lab Chip 4:412–415, 2004.

    Article  Google Scholar 

  32. Matsuda, T. J. Poly(N-isopropylacrylamide)-grafted gelatin as a thermoresponsive cell-adhesive, mold-releasable material for shape-engineered tissues. Biomater. Sci. Polym. Ed. 15:947–955, 2004.

    Article  Google Scholar 

  33. Nath, N., J. Hyun, H. Ma, and A. Chilkoti. Surface engineering strategies for control of protein and cell interactions. Surf. Sci. 570:98–110, 2004.

    Article  Google Scholar 

  34. Okano, T., N. Yamada, M. Okuhara, H. Sakai, and Y. Sakurai. Mechanism of cell detachment from temperature-modulated, hydrophilic–hydrophobic polymer surfaces. Biomaterials 16:297–303, 1995.

    Article  Google Scholar 

  35. Pierschbacher, M. D., and E. Ruoslahti. Cell attachment of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309:30–33, 1984.

    Article  Google Scholar 

  36. Potts, J. R., and I. D. Campbell. Structure and function of fibronectin modules. Matrix Biol. 15:313–320, 1996.

    Article  Google Scholar 

  37. Reed, J. C. BCL-2 and the regulation of programmed cell-death. J. Cell Biol. 124:1–6, 1994.

    Article  Google Scholar 

  38. Reed, J. A., A. E. Lucero, M. A. Cooperstein, and H. E. Canavan. The effects of cell culture parameters on cell release kinetics from thermoresponsive surfaces. Appl. Biomater. Biomech. 6:81–88, 2008.

    Google Scholar 

  39. Saad, B., O. M. Keiser, M. Welti, G. K. Uhlschmid, P. Neuenschwander, and U. W. Suter. Multiblock copolyesters as biomaterials: in vitro biocompatibility testing. J. Mater. Sci. Mater. Med. 8:497–505, 1997.

    Article  Google Scholar 

  40. Schild, H. G. Poly(N-Isopropylacrylamide)—experiment, theory, and application. Prog. Polym. Sci. 17:163–249, 1992.

    Article  Google Scholar 

  41. Schmaljohann, D., J. Oswald, B. Jorgensen, M. Nitschke, D. Beyerlein, and C. Werner. Thermo-responsive PNiAAm-g-PEG films for controlled cell detachment. Biomacromolecules 4:1733–1739, 2003.

    Article  Google Scholar 

  42. Schmalz, G., U. Schuster, and H. Schweikl. Influence of metals on IL-6 release in vitro. Biomaterials 19:1689–1694, 1998.

    Article  Google Scholar 

  43. Schmittgen, T. D., and K. J. Livak. Analyzing real-time PCR data by the comparative C-T method. J. Nat. Protoc. 3:1101–1108, 2008.

    Article  Google Scholar 

  44. Schulte, V. A., M. Diez, M. Moller, and M. C. Lensen. Surface topography induces fibroblast adhesion on intrinsically nonadhesive poly(ethylene glycol) substrates. Biomacromolecules 10:2795–2801, 2009.

    Article  Google Scholar 

  45. Steele, J. G., B. A. Dalton, G. Johnson, and P. A. Underwood. Adsorption of Fibronectin and vitronectin onto primaria and tissue-culture polystyrene and relationship to the mechanism of initial attachment of human vein endothelial-cells and BHK-21 fibroblasts. Biomaterials 16:1057–1067, 1995.

    Article  Google Scholar 

  46. Stile, R. A., and K. E. Healy. Thermo-responsive peptide-modified hydrogels for tissue regeneration. Biomacromolecules 2:185–194, 2001.

    Article  Google Scholar 

  47. Takezawa, T., M. Yamazaki, Y. Mori, T. Yonaha, and K. J. Yoshizato. Morphological and immune-cytochemical characterization of a hetero-spheroid composed of fibroblasts and hepatocytes. J. Cell Sci. 101:495–501, 1992.

    Google Scholar 

  48. Toworfe, G. K., R. J. Composto, C. S. Adams, I. M. Shapiro, and P. J. Ducheyne. Fibronectin adsorption on surface-activated poly(dimethylsiloxane) and its effect on cellular function. Biomed. Mater. Res. A. 71A:449–461, 2004.

    Article  Google Scholar 

  49. Vihola, H., A. Laukkanen, L. Valtola, H. Tenhu, and J. Hirvonen. Cytotoxicity of thermosensitive polymers poly(N-isopropylacrylamide), poly(N-vinylcaprolactam) and amphiphilically modified poly(N-vinylcaprolactam). Biomaterials 26:3055–3064, 2005.

    Article  Google Scholar 

  50. von Recum, H. A., S. W. Kim, A. Kikuchi, M. Okuhara, Y. Sakurai, and T. J. Okano. Novel thermally reversible hydrogel as detachable cell culture substrate. Biomed. Mater. Res. 40:631–639, 1998.

    Article  Google Scholar 

  51. Wischerhoff, E., N. Badi, J. F. Lutz, and A. Laschewsky. Smart bioactive surfaces. Soft Matter 6:705–713, 2010.

    Article  Google Scholar 

  52. Wischerhoff, E., S. Glatzel, K. Uhlig, A. Lankenau, J. F. Lutz, and A. Laschewsky. Tuning the thickness of polymer brushes grafted from nonlinearly growing multilayer assemblies. Langmuir 25:5949–5956, 2009.

    Article  Google Scholar 

  53. Wischerhoff, E., K. Uhlig, A. Lankenau, H. G. Borner, A. Laschewsky, C. Duschl, and J. F. Lutz. Controlled cell adhesion on PEG-based switchable surfaces. Angew. Chem. Int. Ed. 47:5666–5668, 2008.

    Article  Google Scholar 

  54. Wittmer, C. R., J. A. Phelps, W. M. Saltzman, and P. R. Van Tassel. Fibronectin terminated multilayer films: protein adsorption and cell attachment studies. Biomaterials 28:851–860, 2007.

    Article  Google Scholar 

  55. Wong, J. Y., J. B. Leach, and X. Q. Brown. Balance of chemistry, topography, and mechanics at the cell–biomaterial interface: issues and challenges for assessing the role of substrate mechanics on cell response. Surf. Sci. 570:119–133, 2004.

    Article  Google Scholar 

  56. Xiao, F., L. Chen, R. F. Xing, Y. P. Zhao, J. Dong, G. Guo, and R. Zhang. In vitro cyto-biocompatibility and cell detachment of temperature-sensitive dextran hydrogel. Colloids Surf. B. 71:13–18, 2009.

    Article  Google Scholar 

  57. Yamada, N., T. Okano, H. Sakai, F. Karikusa, Y. Sawasaki, and Y. Sakurai. Thermoresponsive polymeric surfaces—control of attachment and detachment of cultured cells. Makromol. Chem. Rapid Commun. 11:571–576, 1990.

    Article  Google Scholar 

  58. Yamato, M., C. Konno, A. Kushida, M. Hirose, M. Utsumi, A. Kikuchi, and T. Okano. Release of adsorbed fibronectin from temperature-responsive culture surfaces requires cellular activity. Biomaterials 21:981–986, 2000.

    Article  Google Scholar 

  59. Yamato, M., M. Utsumi, A. Kushida, C. Konno, A. Kikuchi, and T. Okano. Thermo-responsive culture dishes allow the intact harvest of multilayered keratinocyte sheets without dispase by reducing temperature. Tissue Eng. 7:473–480, 2001.

    Article  Google Scholar 

  60. Yang, J., M. Yamato, C. Kohno, A. Nishimoto, H. Sekine, F. Fukai, and T. Okano. Cell sheet engineering: recreating tissues without biodegradable scaffolds. Biomaterials 26:6415–6422, 2005.

    Article  Google Scholar 

  61. Yaszay, B., M. C. D. Trindade, M. Lind, S. B. Goodman, and R. L. Smith. Fibroblast expression of C–C chemokines in response to orthopaedic biomaterial particle challenge in vitro. J. Orthop. Res. 19:970–976, 2001.

    Article  Google Scholar 

  62. Yen, H. J., S. H. Hsu, and C. L. Tsai. Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes. Small 5:1553–1561, 2009.

    Article  Google Scholar 

  63. Yu, S. C., Z. H. Lu, Z. H. Chen, X. S. Liu, M. H. Liu, and C. J. Gao. Surface modification of thin-film composite polyamide reverse osmosis membranes by coating N-isopropylacrylamide-co-acrylic acid copolymers for improved membrane properties. J. Membr. Sci. 371:293–306, 2011.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Anne Sänger for preparation of the biofunctional coatings, Tyler Fruneaux for help with cellular imaging, and Selin Demirler and Allyson Hill for assistance with data analysis. L.S. acknowledges the National Science Foundation for support through grant #0923273.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauren S. Sefcik.

Additional information

Associate Editor Aleksander S. Popel oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sefcik, L.S., Kaminski, A., Ling, K. et al. Effects of PEG-Based Thermoresponsive Polymer Brushes on Fibroblast Spreading and Gene Expression. Cel. Mol. Bioeng. 6, 287–298 (2013). https://doi.org/10.1007/s12195-013-0286-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-013-0286-7

Keywords

Navigation