Skip to main content

Advertisement

Log in

Germination ecology of the aromatic halophyte Artemisia caerulescens L.: influence of abiotic factors and seed after-ripening time

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

Artemisia caerulescens L. is a rare aromatic perennial shrub growing in saline or brackish environments of the central and western part of the Mediterranean region. On the other hand, despite its distribution in unstable and highly selective environments such as salt marshes, no data are available on its ecological adaptability or on its growth strategy. In an effort to fill these gaps, we performed three experiments in order to evaluate the effects of selected environmental abiotic factors on the seed germination of A. caerulescens. In the first experiment, we determined the effect of different temperatures, photoperiod regimes and salinity on the germination of 120 days old seeds. Secondly, we tested the germination behaviour of the seeds in relation to seed after-ripening time and salinity. The results showed that a temperature regime of 10/20°C and a photothermoperiod of 12/12 h were optimal conditions for seed germination. Salinity affected the final germination rate and mean time to germination. Until 60 days of after-ripening, the seeds exhibited a primary dormancy state. Then, their germination performance was affected by seed after-ripening time and salinity. The data obtained in this study allow us to outline a fairly accurate picture of the ecological requirements of A. caerulescens during germination and of the degree of viability of its seeds at least in the first year of their life. The significant different susceptibility of the seeds to salinity leads to the conclusion that the spread of this species by seeds strongly depends on soil salinity fluctuations. Knowledge of optimal germination requirements could also be useful for the possible use of plant seeds as propagation material in restoration and biodiversity conservation programmes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aharizad S, Zaefizadeh M, Mehdipour M (2013) Salinity tolerance of hull-less barley genotypes in germination stage. World Essays J 1:1–6

    Google Scholar 

  • Arrigoni PV (2007) Il paesaggio vegetale In Il Parco Regionale della Maremma e il suo territorio, guida per conoscere e capire. Pacini Ed., Pisa, pp 41–52

  • Atia A, Debez A, Rabhi M, Athar HU, Abdelly C (2006) Alleviation of salt-induced seed dormancy in the perennial halophyte Crithmum maritimum L. (Apiaceae). Pakistan J Bot 38:1367–1372

    Google Scholar 

  • Baskin CC, Baskin JM (2014) Seeds: ecology, biogeography, and evolution of dormancy and germination. Academic Press, San Diego

    Google Scholar 

  • Baskin CC, Baskin JM, Meyer SE (1993) Seed dormancy in the Colorado plateau shrub Mahonia fremontii (Berberidaceae) and its ecological and evolutionary implications. SW Naturalist 38: 91–99

    Article  Google Scholar 

  • Baskin CC, Milberg P, Anderson L, Baskin JM (2001) Seed dormancy breaking and germination requirements of Drosera anglica, an insectivorous species of the Northern Hemisphere. Acta Oecol 12:1–8

    Article  Google Scholar 

  • Bertacchi A, Lombardi T, Tomei PE (2007) Le aree umide salmastre della Tenuta di San Rossore (PI): zonazione e successione delle specie vegetali in relazione alla salinità del suolo. Inter Nos 1 :63–72

    Google Scholar 

  • Biondi E, Valentini G, Bellomaria B (2000) Essential oil of some halophyle and subhalophyle taxa Artemisia L. from the central European Mediterranean. J Essential Oil Res 12:365–371

    Article  CAS  Google Scholar 

  • Biondi E, Burrascano S, Casavecchia S, Copiz R, Del Vico E, Galdenzi D, Gigante D, Lasen C, Spampinato G, Venanzoni R, Zivkovic L, Blasi C (2012) Diagnosis and syntaxonomic interpretation of Annex I Habitats (Dir 92/43/ EEC) in Italy at the alliance level. Pl Sociol 49:5–37

    Google Scholar 

  • Birendera K, Irendra K, Ekta G, Himanshi M, Singh HP, Muhanad A (2013) Constant and alternating temperature effects on seed germination potential in Artemisia annua L. J Crop Improv 27:636–642

    Article  Google Scholar 

  • Chapman VJ (1960) Salt marshes and salt deserts of the world. Interscience Publishers, New York

    Google Scholar 

  • Cochrane A (2018) Salt and waterlogging stress impacts on seed germination and early seedling growth of selected endemic plant species from Western Australia. Pl Ecol 219:633–647

    Article  Google Scholar 

  • Conti F, Abbate G, Alessandrini A, Blasi C (2005) An annotated checklist of the Italian vascular flora. Palombi, Roma

    Google Scholar 

  • Dítě D, Dítětová Z, Eliáš P, Šuvada R (2018) Rare plant species of salt marshes of the Croatian coast. Hacquetia 17:221–234

    Article  Google Scholar 

  • Euro+Med (2006–[continuously updated]): Euro+Med PlantBase – the information resource for Euro-Mediterranean plant diversity. Available at http://ww2.bgbm.org/EuroPlusMed (Accessed 1 October 2018)

  • Farooq M, Basra SMA, Hafeez K, Ahmad N (2005) Thermal hardening, a new seed vigor enhancement tool in rice. J Integ Pl Biol 47:187–193

    Article  Google Scholar 

  • Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171:501–523

    Article  CAS  PubMed  Google Scholar 

  • Fiori A (1984) Artemisia In Nuova Flora analitica d’Italia Edagricole Bologna. pp 638–639

    Google Scholar 

  • Gul B, Ansari R, Flowers TJ, Khan MA (2013) Germination strategies of halophyte seeds under salinity. Environm Exp Bot 92:4–18

    Article  CAS  Google Scholar 

  • Gutterman Y (1994) Strategies of seed dispersal and germination in plants inhabiting deserts. Bot Rev 60:373–425

    Article  Google Scholar 

  • Horvatic S (1934) Flora i vegetacija otoka Paga. Prirodosl. Istra??. Jugosl. Akad. 19

  • Huang Z, Gutterman Y (1999) Water absorption by mucilaginous achenes of Artemisia monosperma: floating and germination as affected by salt concentrations. Israel J Pl Sci 47:27–34

    Article  Google Scholar 

  • Huang ZY, Gutterman Y (2000) Comparison of germination strategies of Artemisia ordosica with its two congeners from deserts of China and Israel. Acta Bot Sin 42:71–80

    Google Scholar 

  • Ishikawa SI, Kachi N (2000) Differential salt tolerance of two Artemisia species growing in contrasting coastal habitats. Ecol Res 15:241–247

    Article  CAS  Google Scholar 

  • Kaligarič M, Škornik S (2006) Halophile vegetation of the Slovenian seacoast: Thero-Salicornietea and Spartinetea maritimae. Hacquetia 5:25–36

    Google Scholar 

  • Khan MA, Gul B (2006) Halophyte seed germination. In Khan MA, Weber DJ (eds) Ecophysiology of high salinity tolerant plants. Springer, The Netherlands

    Chapter  Google Scholar 

  • Khan MA, Gulzar S (2003) Light, salinity, and temperature effects o the seed germination of perennial grasses. Amer J Bot 90:131–134

    Article  Google Scholar 

  • Khan MA, Ungar IA (1997) Effects of light, salinity, and thermoperiod on the seed germination of halophytes. Canad J Bot 75:835–841

    Article  Google Scholar 

  • Khan MA, Ungar IA (1999) Effect of salinity on the seed germination of Triglochin maritima under various temperature regimes. Great Basin Naturalist 59: 44–150.

    Google Scholar 

  • Koller D (1969) The physiology of dormancy and survival of plants in desert environments. Symp Soc Exp Biol 23:449–469

    CAS  PubMed  Google Scholar 

  • Koller D, Sachs M, Negbi M (1964) Germination – regulating mechanisms in some desert seeds, VII Artemisia monosperma. Pl Cell Physiol 5:85–100

    Article  Google Scholar 

  • Li Y (2008) Effect of salt stress on seed germination and seedling growth of three salinity plants. Pakistan J Biol Sci 11:1268–1272

    Article  CAS  Google Scholar 

  • Lombardi T, Bedini S, Onnis A (1996) The germination characteristics of a population of Zannichellia palustris subsp, pedicellata. Aquatic Bot 54:287–296

    Article  Google Scholar 

  • Lombardi T, Fochetti T, Onnis A (1998) Germination of Briza maxima L. seeds: effects of temperature, light, salinity and seed harvesting time. Seed Sci Technol 26:463–470

    Google Scholar 

  • Mariko S, Kachi N, Ishikawa SI, Furukawa A (1992) Germination ecology of coastal plants in relation to salt environment. Ecol Res 7:225–234

    Article  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Pl Biol 59:651–681

    Article  CAS  Google Scholar 

  • Rivas-Martınez S, Rivas-Saenz S (2009) Worldwide Bioclimatic Classification System, 1996–2019 Phytosociological Research Center, Spain. Available at http://www.globalbioclimatics.org

  • Ruan S, Xue Q, Thlkowska K (2002) Effect of seed priming on germination and health of rice (Oryza sativa L ) seeds. Seed Sci Technol 30:451–458

    Google Scholar 

  • Sabo DG, Johnson GV, Martin WC, Aldon EF (1979) Germination requirements of 19 species of arid land plants. Rocky Mountain Forest and Range Exp Stn, Forest Service, US Dept Agric SEAM USDA Forest Service Program, Res Pap RM-2100, pp 1–26

    Google Scholar 

  • Sciandrello S, Tomaselli V (2014) Coastal salt-marshes plant communities of the Salicornietea fruticosae class in Apulia (Italy). Biologia 69:53–69

    Article  Google Scholar 

  • Sonjak S, Udovic M, Wraber T, Likar M, Regvar M (2009) Diversity of halophytes and identification of arbuscular mycorrhizal fungi colonising their roots in an abandoned and sustained part of Secovlje salterns. Soil Biol Biochem 41:1847–1856

    Article  CAS  Google Scholar 

  • Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (1980) Flora Europaea, Vol. 4. Cambridge University Press, Cambridge

  • Ungar IA (1982) Germination ecology of halophytes. In Sen DN, Rajpurchit KS (eds) Contributions to the ecology of halophytes. Junk, The Hague, pp 143–154

    Chapter  Google Scholar 

  • Ungar IA (1991) Ecophysiology of vascular halophytes. CRC Press, Boca Raton

    Google Scholar 

  • Ungar IA (1996) Effect of salinity on seed germination, growth and ion accumulation of Atriplex patula (Chenopodiaceae). Amer J Bot 83:604–607

    Article  Google Scholar 

  • Ungar IA (2001) Seed banks and seed population dynamics of halophytes. Wetland Ecol Managem 9:499–510

    Article  Google Scholar 

  • Vicente MJ, Conesa E, Álvarez-Rogel J, Franco JA, Martínez-Sánchez JJ (2007) Effects of various salts on the germination of three perennial salt marsh species. Aquatic Bot 87:167–170

    Article  CAS  Google Scholar 

  • Zia S, Khan MA (2004) Effect of light, salinity, and temperature on seed germination of Limonium stocksii. Canad J Bot 82:151–157

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by grants from the University of Pisa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiziana Lombardi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lombardi, T., Bedini, S. & Bertacchi, A. Germination ecology of the aromatic halophyte Artemisia caerulescens L.: influence of abiotic factors and seed after-ripening time. Folia Geobot 54, 115–124 (2019). https://doi.org/10.1007/s12224-019-09345-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12224-019-09345-4

Keywords

Navigation