Skip to main content

Advertisement

Log in

Feeding Habits and Short-Term Mobility Patterns of Blue Crab, Callinectes sapidus, Across Invaded Habitats of the Ebro Delta Subjected to Contrasting Salinity

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

The blue crab Callinectes sapidus was first observed in the Ebro Delta in 2012 and since then captures have increased exponentially up to over 2 t per day, while its presence remains low in other Catalonian estuarine areas. Here, we use a stable isotope approach (δ15N and δ13C) to explore the dietary habits of adult blue crab in four different invaded habitats—bays, coastal lagoons, rice field drainage channels, and the Ebro River—in order to assess the strength of bottom-up forces and identify risks for native and aquaculture species, as well as patterns of site fidelity (male individuals). Mixing models showed average contributions of 35.89% from organic matter in sediments, 34.25% from animal resources (fish, crustaceans, gastropods, and bivalves), and 23.84% from vegetal resources (aquatic plants and algae), although there were important differences across habitat sites. In sites where bivalves were available, they can represent up to ca. 75% of the diet, thus threatening natural banks and local oyster and mussel farms. The average estimated trophic position of blue crabs in those sites was only 2.8, which confirms an omnivorous behavior but also can be attributed to the fact that mollusks were rare in the majority of the areas sampled in the Ebro Delta. Crabs from the same habitat site exhibited very little isotopic variability, suggesting that they remain in those environments long enough to reflect local salinity conditions. Overall, our results suggest that blue crabs are likely using all locally available resources and remain in certain sites, even when preferred animal preys are scarce and low-quality items are the main dietary option.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson, T.F., and M.A. Arthur. 1983. Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems. In Stable Isotopes in Sedimentary Geology, ed. M.A. Arthur, T.F. Anderson, I.R. Kaplan, J. Veizer, and L.S. Land. Dallas: Society of Economic Paleontologists Ch. 1, 1–151.

    Google Scholar 

  • Aslan, H., and M.J. Polito. 2021. Trophic ecology of the Atlantic blue crab Callinectes sapidus as an invasive non-native species in the Aegean Sea. Biological Invasions 23: 2289–2304. https://doi.org/10.1007/s10530-021-02506-7.

    Article  Google Scholar 

  • Barber, J.S., and J.S. Cobb. 2009. Qualitative observations of Dungeness crabs Cancer magister in and around traps: Evidence of resource guarding and clustering. Marine and Freshwater Behaviour and Physiology 42 (2): 135–146. https://doi.org/10.1080/10236240902860011.

    Article  Google Scholar 

  • Belgrad, B.A., and B.D. Griffen. 2016. The influence of diet composition on fitness of the blue crab Callinectes Sapidus. PLoS ONE 11 (1): e0145481. https://doi.org/10.1371/journal.pone.0145481.

    Article  CAS  Google Scholar 

  • Bertolero, A., and J. Navarro. 2018. A native bird as a predator for the invasive apple snail a novel rice field invader in Europe. Aquatic Onservation Marine and Freshwater Ecosystems 28 (5): 1099–1104. https://doi.org/10.1002/aqc.2917.

    Article  Google Scholar 

  • Beqiraj, S., and L. Kashta. 2010. The establishment of blue crab Callinectes sapidus Rathbun 1896 in the Lagoon of Patok Albania (south-east Adriatic Sea). Aquatic Invasions 5 (2): 219–221.

    Article  Google Scholar 

  • Boutton, T.W. 1991. Stable carbon isotope ratios of natural materials: II Atmospheric terrestrial marine and freshwater environments. In Carbon Isotope Techniques, ed. D.C. Coleman and B. Fry, 173–185. San Diego: Academic Press.

    Chapter  Google Scholar 

  • Brett, M.T. 2014. Resource polygon geometry predicts Bayesian stable isotope mixing model bias. Marine Ecology Progress Series 514: 1–12. https://doi.org/10.3354/meps11017.

    Article  Google Scholar 

  • Brossa, L., R.M. Marcé, F. Borrull, and E. Pocurull. 2005. Occurrence of twenty‐six endocrine‐disrupting compounds in environmental water samples from Catalonia, Spain. Environmental Toxicology and Chemistry: An International Journal 24 (2): 261–267.

  • Byrnes, J.E., and P.L., Reynolds, and J.J. Stachowicz. 2007. Invasions and extinctions reshape coastal marine food webs. PLoS ONE 2 (3): e295. https://doi.org/10.1371/journal.pone.0000295.

    Article  Google Scholar 

  • Carlsson, N.O., O. Sarnelle, and D.L. Strayer. 2009. Native predators and exotic prey–an acquired taste? Frontiers in Ecology and the Environment 7 (10): 525–532. https://doi.org/10.1890/080093.

    Article  Google Scholar 

  • Carr, S.D., R.A. Tankersley, J.L. Hench, R.B. Jr Forward, and R.A. Luettich. 2004. Movement patterns and trajectories of ovigerous blue crabs Callinectes sapidus during the spawning migration. Estuarine Coastal and Shelf Science 60 (4): 567–579. https://doi.org/10.1016/j.ecss.2004.02.012.

    Article  Google Scholar 

  • Carrozzo, L., L. Potenza, P. Carlino, M.L. Costantini, L. Rossi, and G. Mancinelli. 2014. Seasonal abundance and trophic position of the Atlantic blue crab Callinectes sapidus Rathbun 1896 in a Mediterranean coastal habitat. Rendiconti Lincei Scienze Fisiche e Naturali 25: 201–208. https://doi.org/10.1007/s12210-014-0297-x.

    Article  Google Scholar 

  • Castejón, D., and G. Guerao. 2013. A new record of the American blue crab Callinectes sapidus Rathbun 1896 (Decapoda: Brachyura: Portunidae) from the Mediterranean coast of the Iberian Peninsula. BioInvassion Records 2: 141–143. https://doi.org/10.3391/bir.2013.2.2.08.

    Article  Google Scholar 

  • Cerling, T.E., L.K. Ayliffe, M.D. Dearing, J.R. Ehleringer, B.H. Passey, D.W. Podlesack, A. Torregrossa, and A.G. West. 2007. Determining biological tissue turnover using stable isotopes: The reaction progress variable. Oecologia 151: 175–189. https://doi.org/10.1007/s00442-006-0571-4.

    Article  Google Scholar 

  • Chappuis, E., V. Seriñá, E. Martí, E. Ballesteros, and E. Gacia. 2017. Decrypting stable-isotope (δ13C and δ15N) variability in aquatic plants. Freshwater Biology 62: 1807–1818. https://doi.org/10.1111/fwb.12996.

    Article  CAS  Google Scholar 

  • del Giorgio, P. A., and R. L. France. 1996. Ecosystem‐specific patterns in the relationship between zooplankton and POM or microplankton del13C. Limnology and Oceanography 41 (2): 359–365.

  • Deegan, L.A., and R.H. Garritt. 1997. Evidence for spatial variability in estuarine food webs. Marine Ecology Progress Series 147: 31e47. https://doi.org/10.3354/meps147031

  • Dehairs, F., R.G. Rao, P.C. Mohan, A.V. Raman, S. Marguillier, and L. Hellings. 2000. Tracing mangrove carbon in suspended matter and aquatic fauna of the Gautami-Godavari Delta Bay of Bengal (India). Hydrobiologia 431 (2): 225–241. https://doi.org/10.1023/A:1004072310525.

    Article  CAS  Google Scholar 

  • Dong, S., G. Zheng, X. Yu, and C. Fu. 2012. Biological control of golden apple snail Pomacea canaliculata by Chinese soft-shelled turtle Pelodiscus sinensis in the wild rice Zizania latifolia field. Scientia Agricola 69 (2): 142–146. https://doi.org/10.1590/S0103-90162012000200009.

    Article  Google Scholar 

  • Dulčić, J., P. Tutman, S. Matić-Skoko, and B. Glamuzina. 2011. Six years from first record to population establishment: The case of the blue crab Callinectes sapidus Rathbun 1896 (Brachyura Portunidae) in the Neretva river delta (South-eastern Adriatic Sea Croatia). Crustaceana 84 (10): 1211–1220. https://doi.org/10.1163/156854011X587478.

    Article  Google Scholar 

  • Estiarte, M., J. Peñuelas, C. López-Martínez, and R. Pérez-Obiol. 2008. Holocene palaeoenvironment in a former coastal lagoon of the arid south eastern Iberian Peninsula: salinization effects on δ15N. Vegetation History and Archaeobotany 17: 667e674. https://doi.org/10.1007/s00334-008-0153-y

  • Florido, R., and A.J. Sanchez. 2010. Effect of seagrass complexity prey mobility and prey density on predation by the blue crab Callinectes sapidus (Decapoda Brachyura). Crustaceana 83 (9): 1069–1089. https://doi.org/10.1163/001121610X521217.

    Article  Google Scholar 

  • Frederiksen, M., M. Edwards, A.J. Richardson, N.C. Halliday, and S. Wanless. 2006. From plankton to top predators: Bottom-up control of a marine food web across four trophic levels. Journal of Animal Ecology 75 (6): 1259–1268. https://doi.org/10.1111/j.1365-2656.2006.01148.x.

    Article  Google Scholar 

  • Gil Fernández, A. 2018. Análisis de la dieta de Callinectes sapidus (Rathbun 1896) en ambientes recientemente invadidos del Golfo de Valencia. Valencia: Universitat Politècnica de Valencia.

    Google Scholar 

  • Hammer, H.S., M.L. Powell, W.T. Jones, V.K. Gibbs, A.L. Lawrence, J.M. Lawrence, and S.A. Watts. 2012. Effect of feed protein and carbohydrate levels on feed intake growth and gonad production of the sea urchin Lytechinus variegatus. Journal of the World Aquaculture Society 43 (2): 145–158. https://doi.org/10.1111/j.1749-7345.2012.00562.x.

    Article  Google Scholar 

  • Hantoush, A.A., Q.H. Al-Hamadany, A.S. Al-Hassoon, and H.J. Al-Ibadi. 2015. Nutritional value of important commercial fish from Iraqi waters. International Journal of Marine Science 5 (11): 1–5. https://doi.org/10.5376/ijms.2015.05.0011.

    Article  Google Scholar 

  • Hines, A.H. 1982. Coexistence in a kelp forest: Size population dynamics and resource partitioning in a guild of spider crabs (Brachyura Majidae). Ecological Monographs 52: 179–198. https://doi.org/10.2307/1942610.

    Article  Google Scholar 

  • Hunt, G.L., Jr., and S. McKinnell. 2006. Interplay between top-down, bottom-up, and wasp-waist control in marine ecosystems. Progress in Oceanography 68 (2–4): 115–124. https://doi.org/10.1016/j.pocean.2006.02.008.

    Article  Google Scholar 

  • Ibáñez, C., C. Alcaraz, N. Caiola, A. Rovira, R. Trobajo, M. Alonso, C. Duran, P. Jiménez, A. Munné, and N. Prat. 2012. Regime shift from phytoplankton to macrophyte dominance in a large river: Top-down versus bottom-up effects. Science of the Total Environment 416: 314–322. https://doi.org/10.1016/j.scitotenv.2011.11.059.

    Article  CAS  Google Scholar 

  • Gallego, E.P., C.R. Millán, R.M.Á. Halcón, I.S. Bayón, M.G. Martinez, D.A. Cava, M. Lanao, and A. Anadón. 2020. El caracol manzana en el curso bajo del Río Ebro Gestión de una plaga. Naturaleza Aragonesa: Revista De La Sociedad De Amigos Del Museo Paleontológico De La Universidad De Zaragoza 36: 49–56.

    Google Scholar 

  • Keller, R.P., J. Geist, J.M. Jeschke, and I. Kühn. 2011. Invasive species in Europe: Ecology status and policy. Environmental Sciences Europe 23 (1): 1–17. https://doi.org/10.1186/2190-4715-23-23.

    Article  Google Scholar 

  • Kennish, R. 1996. Diet composition influences the fitness of the herbivorous crab Grapsus albolineatus. Oecologia 105: 22–29. https://doi.org/10.1007/bf00328787.

    Article  Google Scholar 

  • Laughlin, R.A. 1982. Feeding habits of the blue crab, Callinectes sapidus Rathbun in the Apalachicola estuary Florida. Bulletin of Marine Science 32 (4): 807–822.

    Google Scholar 

  • López, V. 2020. Seguiment del cranc blau (Callinectes sapidus) al delta de l’Ebre, 1–127. Amposta: Monverte Estudis Ambientals.

    Google Scholar 

  • López, V., and J. Rodon. 2018. Diagnosi i situació actual del cranc blau (Callinectes sapidus) al delta de l’Ebre, 1–86. Generalitat de Catalunya: Direcció General de Pesca i Afers Marítims.

    Google Scholar 

  • Lohrer, A.M., and R.B. Whitlatch. 1997. Ecological studies on the recently introduced Japanese shore crab (Hemigrapsus sanguineus) in Eastern Long Island Sound. In Proceedings of the Second Northeast Conference on Nonindiginous Aquatic Nuisance Species, ed. Balcom, N.C., 49–60. Burlington: Connecticut Sea Grant College Program.

  • Mancinelli, G., P. Chainho, L. Cilenti, S. Falco, K. Kapiris, G. Katselis, and F. Ribeiro. 2017a. The Atlantic blue crab Callinectes sapidus in southern European coastal waters: Distribution impact and prospective invasion management strategies. Marine Pollution Bulletin 119 (1): 5–11. https://doi.org/10.1016/j.marpolbul.2017.02.050.

    Article  CAS  Google Scholar 

  • Mancinelli, G., D. Raho, M. Zotti, K. Alujević, M.T. Guerra, and S. Vizzini. 2017b. Trophic flexibility of the Atlantic blue crab Callinectes sapidus in invaded coastal systems of the Apulia region (SE Italy): A stable isotope analysis. Estuarine Coastal and Shelf Science 198: 421–431. https://doi.org/10.1016/j.ecss.2017.03.013.

    Article  CAS  Google Scholar 

  • Mancinelli, G., B. Glamuzina, M. Petrić, L. Carrozzo, L. Glamuzina, M. Zotti, D. Raho, and S. Vizzini. 2016. The trophic position of the Atlantic blue crab Callinectes sapidus Rathbun 1896 in the food web of Parila Lagoon (South Eastern Adriatic Croatia): A first assessment using stable isotopes. Mediterranean Marine Science 17: 634–643. https://doi.org/10.12681/mms.1724.

    Article  Google Scholar 

  • Mancinelli, G., L. Carrozzo, G. Marini, M.L. Costantini, L. Rossi, and M. Pinna. 2013. Occurrence of the Atlantic blue crab Callinectes sapidus Rathbun, 1896 in two Mediterranean coastal habitats: Temporary visitor or permanent resident? Estuarine Coastal and Shelf Science 135: 46–56. https://doi.org/10.1016/j.ecss.2013.06.008.

    Article  CAS  Google Scholar 

  • McCann, M.J., and O.P. Jensen. 2018. Laboratory experiments to determine trophic enrichment factors of stables isotope and fatty acid biomarkers in the blue crab Callinectes sapidus. Texas: Texas A&M University-Corpus Christi. https://doi.org/10.7266/N76971K2.

    Book  Google Scholar 

  • McCutchan, J.H., Jr., W.M. Jr Lewis, C. Kendall, and C.C. McGrath. 2003. Variation in trophic shift for stable isotope ratios of carbon nitrogen and sulfur. Oikos 102 (2): 378–390. https://doi.org/10.1034/j.1600-0706.2003.12098.x.

    Article  CAS  Google Scholar 

  • Menéndez, M., and N. Sanmartí. 2007. Geratology and decomposition of Spartina versicolor in a brackish Mediterranean marsh. Estuarine Coastal and Shelf Science 74 (1–2): 320–330. https://doi.org/10.1016/j.ecss.2007.04.024.

    Article  Google Scholar 

  • Metcalfe, N.B., and P. Monaghan. 2001. Compensation for a bad start: Grow now pay later? Trends in Ecology and Evolution 16 (5): 254–260. https://doi.org/10.1016/S0169-5347(01)02124-3.

    Article  Google Scholar 

  • Obrador, B., and J.L. Pretus. 2012. Budgets of organic and inorganic carbon in a Mediterranean coastal lagoon dominated by submerged vegetation. Hydrobiologia 669(1): 35e54. https://doi.org/10.1007/s10750-012-1152-7

  • Paolisso, M. 2007. Taste the traditions: Crabs crab cakes and the Chesapeake Bay blue crab fishery. American Anthropologist 109 (4): 654–665. https://doi.org/10.1525/aa.2007.109.4.654.

    Article  Google Scholar 

  • Pérez, M., and C.M.P. Camp. 1986. Distribución espacial y biomasa de las fanerógamas marinas de las bahías del delta del Ebro. Investigaciones Pesqueras 50 (4): 519–530.

  • Petta, J.C., O.N. Shipley, S.P. Wintner, G. Cliff, M.L. Dicken, and N.E. Hussey. 2020. Are you really what you eat? Stomach content analysis and stable isotope ratios do not uniformly estimate dietary niche characteristics in three marine predators. Oecologia 192: 1111–1126. https://doi.org/10.1007/s00442-020-04628-6.

    Article  Google Scholar 

  • Post, D.M., C.A. Layman, D.A. Arrington, G. Takimoto, J. Quattrochi, and G.C. Montana. 2007. Getting to the fat of the matter: Models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152 (1): 179–189. https://doi.org/10.1007/s00442-006-0630-x.

    Article  Google Scholar 

  • Post, D.M. 2002. Using stable isotopes to estimate trophic position: Models methods and assumptions. Ecology 83: 703–718. https://doi.org/10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2.

    Article  Google Scholar 

  • Prado, P., A. Peñas, C. Ibáñez, P. Cabanes, L. Jornet, N. Álvarez, and N. Caiola. 2020. Prey size and species preferences in the invasive blue crab Callinectes sapidus: Potential effects in marine and freshwater ecosystems. Estuarine Coastal and Shelf Science 245: 106997. https://doi.org/10.1016/j.ecss.2020.106997.

    Article  Google Scholar 

  • Prado, P., N. Caiola, and C. Ibáñez. 2014. Freshwater inflows and seasonal forcing strongly influence macrofaunal assemblages in Mediterranean coastal lagoons. Estuarine Coastal and Shelf Science 147: 68–77. https://doi.org/10.1016/j.ecss.2014.06.002.

    Article  Google Scholar 

  • Prado, P., N. Caiola, and C. Ibáñez. 2013. Spatio-temporal patterns of submerged macrophytes in three hydrologically altered Mediterranean coastal lagoons. Estuaries and Coasts 36 (2): 414–429. https://doi.org/10.1007/s12237-012-9570-3.

    Article  CAS  Google Scholar 

  • Prado, P., R.H. Carmichael, S.A. Watts, J. Cebrian, and K.L. Jr Heck. 2012. Diet-dependent δ13C and δ15N fractionation among sea urchin Lytechinus variegatus tissues: Implications for food web models. Marine Ecology Progress Series 462: 175–190. https://doi.org/10.3354/meps09786.

    Article  CAS  Google Scholar 

  • Ramach, S., M.Z. Darnell, N. Avissar, and D. Rittschof. 2009. Habitat use and population dynamics of blue crabs Callinectes sapidus in a high-salinity embayment. Journal of Shellfish Research 28 (3): 635–640. https://doi.org/10.2983/035.028.0328.

    Article  Google Scholar 

  • Ramón, M., J. Cano, J.B. Peña, and M.J. Campos. 2005. Current status and perspectives of mollusk (bivalves and gastropods) culture in the Spanish Mediterranean. Boletín Del Instituto Español De Oceanografía 21 (1–4): 361–373.

    Google Scholar 

  • Reichmuth, J.M., R. Roudez, T. Glover, and J.S. Weis. 2009. Differences in prey capture behavior in populations of blue crab (Callinectes sapidus Rathbun) from contaminated and clean estuaries in New Jersey. Estuaries and Coasts 32 (2): 298–308. https://doi.org/10.1007/s12237-008-9130-z.

    Article  Google Scholar 

  • Renaud, S.M., and J.T. Luong-Van. 2006. Seasonal variation in the chemical composition of tropical Australian marine macroalgae. In: Eighteenth International Seaweed Symposium, 155–161. Dordrecht: Springer.

  • Rosas, C., E. Lazaro-Chavez, and F. Bückle-Ramirez. 1994. Feeding habits and food niche segregation of Callinectes sapidus C rathbunae and C similis in a subtropical coastal lagoon of the Gulf of Mexico. Journal of Crustacean Biology 14 (2): 371–382. https://doi.org/10.1163/193724094X00344.

    Article  Google Scholar 

  • Rose, C.D., W.C. Sharp, W.J. Kenworthy, J.H. Hunt, W.G. Lyons, E.J. Prager, J.F. Valentine, M.O. Hall, P.E. Whitfield, and J.W. Fourqurean. 1999. Overgrazing of a large seagrass bed by the sea urchin Lytechinus variegatus in Outer Florida Bay. Marine Ecology Progress Series 190: 211–222. https://doi.org/10.3354/meps190211.

    Article  Google Scholar 

  • Seitz, R.D., R.N. Lipcius, W.T. Stockhausen, and M.M. Montane. 2001. Efficacy of blue crab spawning sanctuaries in Chesapeake Bay. In Spatial processes and management of marine populations, ed. G.H. Kruse, N. Bez, A. Booth, M.W. Dorn, S. Hills, R.N. Lipcius, D. Pelletier, C. Roy, S.J. Smith, and D. Witherell, 607–626. Fairbanks: University of Alaska Sea Grant.

    Google Scholar 

  • Shipley, O.N., and P. Matich. 2020. Studying animal niches using bulk stable isotope ratios: An updated synthesis. Oecologia 193 (1): 27–51. https://doi.org/10.1007/s00442-020-04654-4.

    Article  Google Scholar 

  • Stock, B.C., A.L. Jackson, E.J. Ward, A.C. Parnell, D.L. Phillips, and B.X. Semmens. 2018. Analyzing mixing systems using a new generation of Bayesian tracer mixing models. PeerJ 6: e5096. https://doi.org/10.7717/peerj.5096.

    Article  Google Scholar 

  • Stock, B.C. and B.X. Semmens. 2016. MixSIAR GUI User Manual. Version 3.1. https://github.com/brianstock/MixSIAR/.https://doi.org/10.5281/zenodo.47719.

  • Teo, S.S. 2001. Evaluation of different duck varieties for the control of the golden apple snail (Pomacea canaliculata) in transplanted and direct seeded rice. Crop Protection 20 (7): 599–604. https://doi.org/10.1016/S0261-2194(01)00029-1.

    Article  Google Scholar 

  • Tieszen, L.L., T.W. Boutton, K.G. Tesdahl, and N.A. Slade. 1983. Fractionation and turnover of stable carbon isotopes in animal tissues: Implications for δ13C analyses of diet. Oecologia 57: 32–37. https://doi.org/10.1007/bf00379558.

    Article  CAS  Google Scholar 

  • Turner, H.V., D.L. Wolcott, T.G. Wolcott, and A.H. Hines. 2003. Post-mating behavior intramolt growth and onset of migration to Chesapeake Bay spawning grounds by adult female blue crabs Callinectes sapidus Rathbun. Journal of Experimental Marine Biology and Ecology 295 (1): 107–130. https://doi.org/10.1016/S0022-0981(03)00290-9.

    Article  Google Scholar 

  • Vasconcelos, P., A.N. Carvalho, D. Piló, F. Pereira, J. Encarnação, M.B.  Gaspar, and M.A. Teodósio. 2019. Recent and consecutive records of the Atlantic blue crab (Callinectes sapidus Rathbun, 1896): rapid westward expansion and confirmed establishment along the Southern Coast of Portugal. Thalassas: An International Journal of Marine Sciences 35 (2): 485–494.

  • Venugopal, V., and K. Gopakumar. 2017. Shellfish: Nutritive value, health benefits, and consumer safety. Comprehensive Reviews in Food Science and Food Safety 16 (6): 1219–1242. https://doi.org/10.1111/1541-4337.12312.

    Article  CAS  Google Scholar 

  • Vila-Martínez, N., N. Caiola, C. Ibáñez, L. Benejam, and S. Brucet. 2019. Normalized abundance spectra of fish community reflect hydro-peaking on a Mediterranean large river. Ecological Indicators 97: 280–289. https://doi.org/10.1016/j.ecolind.2018.10.014.

    Article  Google Scholar 

  • Vizzini, S., B. Savona, T.D. Chi, and A. Mazzola. 2005. Spatial variability of stable carbon and nitrogen isotope ratios in a Mediterranean coastal lagoon. Hydrobiologia 550: 73e82. https://doi.org/10.1007/s10750-005-4364-2.

  • Vizzini, S., and A. Mazzola. 2003. Seasonal variations in the stable carbon and nitrogen isotope ratios (13C/12C and 15N/14N) of primary producers and consumers in a western Mediterranean coastal lagoon. Marine Biology 142: 1009e1018. https://doi.org/10.1007/s00227-003-1027-6.

  • Zenetos, A., M. Corsini-Foka, F. Crocetta, V. Gerovasileiou, P.K. Karachle, N. Simboura, K. Tsiamis, and M.A. Pancucci-Papadopoulou. 2018. Deep cleaning of alien and cryptogenic species records in the Greek Seas (2018 update). Management of Biological Invasions 9 (3): 209–226. https://doi.org/10.3391/mbi.2018.9.3.04.

    Article  Google Scholar 

  • Zenetos, A., M.E. Çinar, M.A. Pancucci-Papadopoulou, J.G. Harmelin, G. Furnari, F. Andaloro, N. Bellou, N. Streftaris, and H. Zibrowius. 2005. Annotated list of marine alien species in the Mediterranean with records of the worst invasive species. Mediterranean Marine Science 6 (2): 63–118. https://doi.org/10.12681/mms.186.

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the Spanish Ministry of Science and Innovation for providing funding for the ECESIS project (PID2020-118476RR-C21) within the Research Challenges Program. Financial support was also provided by the Generalitat de Catalunya (Departament d’Agricultura, Ramaderia, Pesca i Alimentació). P. Prado was contracted under the INIA-CCAA cooperative research program for postdoctoral incorporation from the Spanish National Institute for Agricultural and Food Research and Technology (INIA). Authors would like to thank Jose Luis Costa for lending us the crab traps used during the study and to Pep Cabanes for technical assistance during fieldwork sampling. We are also grateful to Tania Andreu for assistance with samples’ preparation for SIA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Prado.

Additional information

Communicated by Jill A. Olin

Appendix

Appendix

Habitat

Site

Salinity

Trophic group

Species description

River

  

Predators

Silurus glanis (N = 1)

    

Discentratus labrax (N = 3)

River

R1 (Tortosa)

0.63 ± 0.01

Plants

Potamogeton pectinatus

   

Algae

Falta

   

Fish

Alburnus alburnus, Leuciscus cephalus, Pseudorasbora parva, Carassius auratus, Liza ramada, Anguila anguila

   

Crustaceans

Palaemon spp.

   

Bivalves

No

   

Gastropods

No

   

Sediment

Yes

   

Other invertebrates

No

 

R2 (St. Jaume d'Enveja)

2.68 ± 0.04

Plants

Myriophyllum spicatum, Potamogeton nodosus, Potamogeton crispus

   

Algae

Enteromorpha sp.

   

Fish

Atherina boyeri, Discentratus labrax (juv), Pseudorasbora parva, Scardinius erythrophthalmus

   

Crustaceans

Palaemon spp.

   

Bivalves

No

   

Gastropods

No

   

Sediment

Yes

   

Other invertebrates

No

 

R3 (close to Amposta)

1.57 ± 0.02

Plants

Potamogeton pectinatus, Vallisneria spiralis

   

Algae

Cladophora sp.

   

Fish

Angulla anguilla, Atherina boyeri, Carassius auratus, Pseudorasbora parva, Rutilis rutilus, Scardinius erythrophthalmus, Sander lucioperca (juv)

   

Crustaceans

Palaemon spp.

   

Bivalves

No

   

Gastropods

No

   

Sediment

Yes

   

Other invertebrates

No

Lagoons

L1 (Encanyissada)

27.26 ± 0.03

Plants

Ruppia cirrohosa

   

Algae

Unidentified red algae

   

Fish

Pomatochistus microps

   

Crustaceans

Palaemon spp.

   

Bivalves

No

   

Gastropods

No

   

Sediment

Yes

   

Other invertebrates

No

 

L2 (Tancada)

31.63 ± 0.02

Plants

Ruppia cirrohosa

   

Algae

Chaetomorpha linum

   

Fish

Atherina boyeri, Pomatochistus microps

   

Crustaceans

Palaemon spp.

   

Bivalves

Cerastoderma sp.

   

Gastropods

No

   

Sediment

Yes

   

Other invertebrates

No

 

L3 (Les Olles)

0.72 ± 0.03

Plants

Potamogeton nodosus, Lemna minor, Ceratophyllum demersum

   

Algae

Green filamentous algae, and green folious algae

   

Fish

Lepomis gibbosus

   

Crustaceans

No

   

Bivalves

No (lots of empty shells of Corvicula fluminea)

   

Gastropods

No (lots of empty shells of Pomacea maculata)

   

Sediment

Yes

   

Other invertebrates

No

Discharge channels

DC1 (Sèquia Gran)

5.28 ± 0.05

Plants

No

   

Algae

Enteromorpha sp.

   

Fish

Dicentrarchus labrax, Anguila anguila, Gobius paganellus

   

Crustaceans

Palaemon spp.

   

Bivalves

No

   

Gastropods

No

   

Sediment

Yes

   

Other invertebrates

No

 

DC2 (Sèquia de l'Ala)

1.11 ± 0.08

Plants

Lemna minor

   

Algae

Enteromorpha sp.

   

Fish

Cyprinus carpio, Gambusia holbrooki, Pseudospora parva

   

Crustaceans

No

   

Bivalves

No

   

Gastropods

F. Physidae

   

Sediment

Yes

   

Other invertebrates

No

 

DC3 (El canalot)

30.57 ± 0.07

Plants

Cymodocea nodosa

   

Algae

Chondria tenuissima

   

Fish

Anguilla anguilla

   

Crustaceans

Palaemon spp.

   

Bivalves

No

   

Gastropods

No

   

Sediment

Yes

   

Other invertebrates

No

Bay

B1 (Northern Alfacs Bay)

30.02 ± 0.06

Plants

Zostera noltii

   

Algae

Enteromorpha sp.

   

Fish

Sparus aurata, Gobius paganellus

   

Crustaceans

Palaemon spp., P. longirostris

   

Bivalves

Mytilus galloprovincialis, Crassostrea gigas

   

Sediment

Yes

   

Other invertebrates

Paranemonia cinerea

 

B2 (Alfacs Bay, Trabucador sand bar)

34.98 ± 0.05

Plants

Cymodocea nodosa

   

Algae

Hypnea musciformis, Acetabularia acetatum, Chaetomorpha linum, Ulva sp., Anotrichium furcellatus, Stypocaulon scoparium

   

Fish

Salaria pavo

   

Crustaceans

Palaemon spp.

   

Bivalves

Cerastoderma sp., Donax spp.

   

Gastropods

Cerithium sp., Conus mediterraneus, Nassarius reticulatus, Hexaples trunculus

   

Sediment

Yes

   

Other invertebrates

Paranemonia cinerea

 

B3 (Fangar Bay)

32.53 ± 0.04

Plants

Cymodocea nodosa

   

Algae

Cladophora sp., Ulva sp., Dictyota sp.

   

Fish

Mullus surmulletus, Sparus aurata

   

Crustaceans

Palaemon spp.

   

Bivalves

Mytilus galloprovincialis, Crassostrea gigas

   

Gastropods

Cerithium sp.

   

Sediment

Yes

   

Other invertebrates

No

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prado, P., Ibáñez, C., Chen, L. et al. Feeding Habits and Short-Term Mobility Patterns of Blue Crab, Callinectes sapidus, Across Invaded Habitats of the Ebro Delta Subjected to Contrasting Salinity. Estuaries and Coasts 45, 839–855 (2022). https://doi.org/10.1007/s12237-021-01004-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-021-01004-2

Keywords

Navigation