Skip to main content
Log in

Protective effects of selective and non-selective cyclooxygenase inhibitors in an animal model of chronic stress

选择性和非选择性环氧合酶抑制剂对慢性压力小鼠模型具有保护作用

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Objective

Cyclooxygenase isoenzyme is known to be expressed in different regions of brain, and is mainly used for the treatment of pain and inflammation. Recently, it is proposed that cyclooxygenase isoenzyme may also play a key role in the pathophysiology of various brain-related disorders. The present study was aimed to explore the protective effect of cyclooxygenase inhibitors on stress by using an animal model of chronic stress.

Methods

The animals were forced to swim individually for a period of 6 min every day for 15 d. Then, the behavior (locomotor activity, anxiety and memory) and biochemical (lipid peroxidation, nitrite level, reduced glutathione, and catalase) alterations were assessed.

Results

Forced swimming for 15 d caused impaired locomotor activity, anxiety-like behavior and decreased percentage of memory retention, as compared to naïve mice (without chronic fatigue treatment). Biochemical analysis revealed significant increases in lipid peroxidation and nitrite level, while levels of reduced glutathione and catalase activity were both decreased. Chronic treatment with naproxen (14 mg/kg, i.p.), rofecoxib (5 mg/kg, i.p.), meloxicam (5 mg/kg, i.p.), nimesulide (5 mg/kg, i.p.) and valdecoxib (10 mg/kg, i.p.) significantly attenuated these behavioral and biochemical (oxidative damage) alterations in chronic-stressed mice.

Conclusion

The cyclooxygenase inhibitors could be used in the management of chronic fatigue-like conditions.

摘要

目的

环氧合酶是广泛表达于大脑各区域的一类同功酶, 主要用于治疗疼痛与炎症。 最近研究还发现环氧合酶在大脑相关疾病的病理生理过程中扮演关键角色。 本文运用慢性压力动物模型, 对环氧合酶抑制剂的保护作用做一探讨。

方法

每只小鼠每天被迫游泳6 min, 共持续15 天。 结束后进行行为学(包括活动能力、焦虑以及记忆能力)和生化指标(包括脂质过氧化、亚硝酸盐水平、还原性型谷胱甘肽和过氧化氢酶水平)的检测。

结果

持续15 天的强迫性游泳会损伤小鼠活动能力, 引起焦虑样行为的产生, 并削弱记忆力。 在生化指标方面, 脂质过氧化和亚硝酸盐水平均显著提高, 还原型谷胱甘肽和过氧化氢酶活力则显著降低。 此外, 环氧合酶抑制剂, 包括甲氧萘丙酸、 罗非考昔、 美洛昔康、 尼美舒利和伐地考昔, 都能显著减缓这些损伤。

结论

环氧合酶抑制剂可被用来治疗慢性疲劳综合症。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Munhoz CD, Garcia-Buenoz B, Madrigal JLM, Lepsch LB, Scavone C, Leza JC. Stress-induced neuroinflammation: mechanisms and new pharmacological targets. Braz J Med Biol Res 2008, 41: 1037–1046.

    Article  CAS  PubMed  Google Scholar 

  2. Chambers D, Bagnall AM, Hempel S, Forbes C. Interventions for the treatment, management and rehabilitation of patients with chronic fatigue syndrome/myalgic encephalomyelitis: an updated systematic review. J R Soc Med 2006, 99: 506–520.

    Article  PubMed  Google Scholar 

  3. Jason LA, Corradi K, Gress S, Williams S, Torres-Harding S. Causes of death among patients with chronic fatigue syndrome. Health Care Women Int 2006, 27: 615–626.

    Article  PubMed  Google Scholar 

  4. Sanders P, Korf J. Neuroaetiology of chronic fatigue syndrome: an overview. World J Biol Psychiatry 2007, 8: 1–7.

    Google Scholar 

  5. McEven BS, Sapolsky RM. Stress and cognitive function. Curr Opin Neurobiol 1995, 5: 205–216.

    Article  Google Scholar 

  6. Porsolt RD, Bertin A, Jafre M. Behavioral despair in rats and mice: Reversal by antidepressants. Psychopharmacology 1977, 51: 291–298.

    Google Scholar 

  7. Thomas MA, Smith AP. An investigation of the longterm benefits of antidepressant medication in the recovery of patients with chronic fatigue syndrome. Hum Psychopharmacol 2006, 21: 503–509.

    Article  CAS  PubMed  Google Scholar 

  8. Fulle S, Mecocci P, Fano G. Specific oxidative alterations in vastus lateralis muscle of patients with the diagnosis of chronic fatigue syndrome. Free Radic Biol Med 2000, 29: 1252–1259.

    Article  CAS  PubMed  Google Scholar 

  9. Fontella FU, Siqueira IR, Vasconcellos AP, Tabajara AS, Netto CA, Dalmaz C. Repeated restraint stress induces oxidative damage in rat hippocampus. Neurochem Res 2005, 30: 105–111.

    Article  CAS  PubMed  Google Scholar 

  10. Silakova JM, Hewett JA, Hewett SJ. Naproxen reduces excitotoxic neurodegeneration in vivo with an extended therapeutic window. J Pharmacol Exp Ther 2004, 309: 1060–1066.

    Article  CAS  PubMed  Google Scholar 

  11. Dhir A, Padi SSV, Naidu PS, Kulkarni SK. Protective effect of naproxen (nonselective COX-inhibitors) or rofecoxib (selective COX-2 inhibitor) in immobilization stress-induced behavioural and biochemical alterations in mice. Eur J Pharmacol 2006, 535: 192–198.

    Article  CAS  PubMed  Google Scholar 

  12. Minghetti L. Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. J Neuropathol Exp Neurol 2004, 63: 901–910.

    CAS  PubMed  Google Scholar 

  13. Asanuma M, Miyazaki I, Ogawa N. Neuroprotective effects of nonsteroidal anti-inflammatory drugs on neurodegenerative diseases. Curr Pharm Des 2004, 10: 695–700.

    Article  CAS  PubMed  Google Scholar 

  14. Galvao RI, Diogenes JP, Maia GC, Filho EA, Vasconcelos SM, de Menezes DB, et al. Tenoxicam exerts a neuroprotective action after cerebral ischemia in rats. Neurochem Res 2005, 30: 39–46.

    Article  CAS  PubMed  Google Scholar 

  15. Klivenyi P, Kiaei M, Gardian G, Calingasan NY, Beal MF. Additive neuroprotective effects of creatine and cyclooxygenase 2 inhibitors in a transgenic mouse model of amyotrophic lateral sclerosis. J Neurochem 2004, 88: 576–582.

    Article  CAS  PubMed  Google Scholar 

  16. Katori M, Majima M. Cyclooxygenase-2: its rich diversity of roles and possible application of its selective inhibitors. Inflamm Res 2000, 49: 367–392.

    Article  CAS  PubMed  Google Scholar 

  17. Reddy DS, Kulkarni SK. Possible role of nitric oxide in the nootropic and antiamnesic effects of neurosteroids on aging and dizocilpine-induced learning impairment. Brain Res 1998, 799: 215–229.

    Article  CAS  PubMed  Google Scholar 

  18. Kulkarni SK, Reddy DS. Animal behavioral models for testing antianxiety agents. Method Find Exp Clin Pharmacol 1996, 18: 219–230.

    CAS  Google Scholar 

  19. Ioth J, Nabeshima T, Kameyania T. Utility of an elevated plusmaze for dissociation of amnesic and behavioral effects of drugs in mice. Eur J Pharmacol 1999, 194: 71–74.

    Article  Google Scholar 

  20. Wills ED. Mechanism of lipid peroxide formation in animal tissues. Biochem J 1966, 99: 667–676.

    CAS  PubMed  Google Scholar 

  21. Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys 1959, 82: 70–77.

    Article  CAS  PubMed  Google Scholar 

  22. Luck H. Catalase. Methods of Enzymatic Analysis. New York: Bergmeyer HU (eds) Academic Press 1971: 885–893.

    Google Scholar 

  23. Green LC, Wagner DA, Glagowski J. Analysis of nitrate, nitrite and [15N] nitrate in biological fluids. Anal Biochem 1982, 126: 131–138.

    Article  CAS  PubMed  Google Scholar 

  24. Lowry OH, Rosenberg NJ, Farr AL, Randall RJ. Protein measurement with the Folin-phenol reagent. J Biol Chem 1951, 193: 265–275.

    CAS  PubMed  Google Scholar 

  25. Kaur G, Kulkarni SK. Reversal of forced swimming-induced chronic fatigue in mice by antidepressant and herbal psychotropic drugs. Indian Drugs 1998, 35: 771–777.

    CAS  Google Scholar 

  26. Devanur LD, Kerr JR. Chronic fatigue syndrome. J Clin Virol 2006, 37: 139–150.

    Article  CAS  PubMed  Google Scholar 

  27. Cleare AJ. The HPA axis and the genesis of chronic fatigue syndrome. Trends Endocrinol Metab 2004, 15: 55–59.

    Article  CAS  PubMed  Google Scholar 

  28. Kaur G, Kulkarni SK. Comparative study of antidepressants and herbal psychotropic drugs in a mouse model chronic fatigue. J Chronic Fatigue Syndr 2000, 6: 23–35.

    Article  Google Scholar 

  29. Singh A, Naidu PS, Gupta S, Kulkarni SK. Effect of natural and synthetic antioxidants in a mouse model of chronic fatigue syndrome. J Med Food 2002, 5: 211–220.

    Article  CAS  PubMed  Google Scholar 

  30. Kumar A, Garg R, Kumar P. Nitric oxide modulation mediates the protective effect of trazodone in a mouse model of chronic fatigue syndrome. Pharmacol Rep 2008, 60: 664–672.

    CAS  PubMed  Google Scholar 

  31. Schonfeldt-Locuona C, Connemann BJ, Wolf RC, Braun M, Freudenmann RW. Bupropion augmentation in the treatment of chronic fatigue syndrome with coexistent major depression. Episode Pharmacopsych 2006, 39: 152–154.

    Article  Google Scholar 

  32. Greenberg S, Frid M. Chronic fatigue syndrome-exercise and physical activity. Harefuah 2006, 145: 276–280.

    PubMed  Google Scholar 

  33. Metz GA, Jadavji NM, Smith LK. Modulation of motor function by stress: a novel concept of the effects of stress and corticosterone on behavior. Eur J Neurosci 2005, 22: 1190–1200.

    Article  PubMed  Google Scholar 

  34. Domanski E, Przekop F, Wolinska-Witort E, Mateusiak K, Chomicka L, Garwacki S. Differential behavioral and hormonal responses to two different stressors (foot shocking and immobilization) in sheep. Exp Clin Pharmacol 1986, 88: 165–172.

    CAS  Google Scholar 

  35. Bristow DJ, Holmes DS. Cortisol levels and anxiety related behaviors in cattle. Physiol Behav 2007, 90: 626–628.

    Article  CAS  PubMed  Google Scholar 

  36. Dhir A, Padi SSV, Naidu PS, Kulkarni SK. Protective effect of naproxen (nonselective COX-2-inhibitors) or rofecoxib (selective COX-2 inhibitor) in immobilization stress-induced behavioral and biochemical alterations in mice. Eur J Pharmacol 2006, 535: 192–198.

    Article  CAS  PubMed  Google Scholar 

  37. Goyal R, Kumar A. Protective effects of alprazolam in acute immobilization stress-induced certain behavioral and biochemical alterations in mice. Pharmacol Rep 2007, 59: 284–290.

    CAS  PubMed  Google Scholar 

  38. Jain NK, Kulkarni SK, Singh A. Lipopolysaccharidemediated immobility in mice: reversal by cyclooxygenase enzyme inhibitor. Methods Find Exp Clin Pharmacol 2001, 23: 441–444.

    Article  CAS  PubMed  Google Scholar 

  39. Mattamml MB, Strong R, Lakshmi VM, Chung HD, Stephenson AH. Prostaglandin H synthetase-mediated metabolism of dopamine: implication for Parkinson’s disease. J Neurochem 1995, 64: 1645–1650.

    Article  Google Scholar 

  40. Cook DB, Nagelkirk PR, Peckerman A, Poluri A, Mores J, Natelson BH. Exercise and cognitive performance in chronic fatigue syndrome. Med Sci Sports Exerc 2005, 37: 1460–1467.

    Article  PubMed  Google Scholar 

  41. Roozendaal B. Glucocorticoids and the regulation of memory consolidation. Psychoneuroendocrinol 2000, 25: 213–238.

    Article  CAS  Google Scholar 

  42. Garcia R. Stress hippocampal plasticity and spatial learning. Synapse 2001, 40: 180–183.

    Article  CAS  PubMed  Google Scholar 

  43. McEwen BS, Albeck D, Cameron H. Stress and the brain: a paradoxical role for adrenal steroids. Vitam Horm 1995, 51: 371–402.

    Article  CAS  PubMed  Google Scholar 

  44. Kaufmann WE, Worley PF, Pegg J, Bremer M, Isakson P. Cyclooxygenase 2 expression during rat neocortical development and in Rett syndrome. Brain Dev 1997, 19: 25–34.

    Article  CAS  PubMed  Google Scholar 

  45. Cakala M, Malik AR, Storsznajder JB. Inhibitor of cyclooxygenase-2 protects against amyloid beta peptide-evoked memory impairment in mice. Pharmacol Rep 2007, 59: 164–172.

    CAS  PubMed  Google Scholar 

  46. Luine V, Villegas M, Martinez C, McEwen BS. Repeated stress causes reversible impairments of spatial memory performance. Brain Res 1994, 639: 167–170.

    Article  CAS  PubMed  Google Scholar 

  47. Madrigal JL, Olivenza R, Moro MA, Lizasoain I, Lorenzo P, Rodrigo J, et al. Glutathione depletion, lipid peroxidation and mitochondrial dysfunction are induced by chronic stress in rat brain. Neuropsychopharmacology 2001, 24: 420–429.

    Article  CAS  PubMed  Google Scholar 

  48. McEwen BS. The neurobiology of stress: From serendipity to clinical relevance. Brain Res 2000, 886: 172–189.

    Article  CAS  PubMed  Google Scholar 

  49. Reagan LP, McEwen BS. Controversies surrounding glucocorticoids-mediated cell death in the hippocampus. J Chem Neuroanat 1997, 13: 149–167.

    Article  CAS  PubMed  Google Scholar 

  50. McIntosh LJ, Hong KE, Sapolsky RM. Glucocorticoids may alter antioxidant enzyme capacity in the brain: baseline studies. Brain Res 1998, 791: 209–214.

    Article  CAS  PubMed  Google Scholar 

  51. Maes M. Inflammatory and oxidative and nitrosative stress pathways underpinning chronic fatigue, somatization and psychosomatic symptoms. Curr Opin Psychiatry 2009, 22(1): 75–83.

    Article  PubMed  Google Scholar 

  52. Tomoda A, Joudoi T, Rabab el M, Matsumoto T, Park TH, Miike T. Cytokine production and modulation: comparison of patients with chronic fatigue syndrome and normal controls. Psychiatry Res 2005, 134: 101–104.

    Article  CAS  PubMed  Google Scholar 

  53. Lorusso L, Mikhaylova SV, Capelli E, Ferrari D, Ngonga GK, Ricevuti G. Immunological aspects of chronic fatigue syndrome. Autoimmun Rev 2009, 8: 287–291.

    Article  CAS  PubMed  Google Scholar 

  54. Richard RS, Wang L, Jelinek H. Erythrocyte oxidative damage in chronic fatigue syndrome. Arch Med Res 2007, 38: 94–98.

    Article  CAS  Google Scholar 

  55. Ozcan ME, Gulec M, Ozerol E, Polat R, Akyol O. Antioxidant enzyme activities and oxidative stress in affective disorders. Int Clin Psychopharmacol 2004, 19: 89–95.

    Article  PubMed  Google Scholar 

  56. Amoroso S, D’Alessio A, Sirabella R, Di Renzo G, Annunziato L. Ca2+-independent caspase-3 but not Ca2+-dependent caspase-2 activation induced by oxidative stress leads to SH-SY5Y human neuroblastoma cell apoptosis. J Neurosci Res 2002, 68: 454–462.

    Article  CAS  PubMed  Google Scholar 

  57. Braughler JM, Hall ED. Central nervous system trauma and stroke. Biochemical considerations for free radical dormation and lipid peroxidation. Free Rad Biol Med 1989, 6: 289–301.

    Article  CAS  PubMed  Google Scholar 

  58. Hu Y, Cardounel A, Gursoy E, Anderson P, Kalimi M. Anti-stress effects of dehydroepiandrosterone. Protection of rats against repeated immobilization stressinduced weight loss, glucocorticoid receptor production, and lipid peroxidation. Biochem Pharmacol 2000, 59: 753–762.

    Article  CAS  PubMed  Google Scholar 

  59. Olivenza R, Moro MA, Lizasoain I, Lorenzo P, Fernández AP, Rodrigo J, et al. Chronic stress induces the expression of inducible nitric oxide synthase in rat brain cortex. J Neurochem 2000, 74: 785–791.

    Article  CAS  PubMed  Google Scholar 

  60. Matsumoto K, Yobimoto K, Huong NTT, Abdel-Fattah M, Hein TV, Watanable H. Psychological stress-induced enhancement of brain lipid peroxidation via nitric oxide systems and its modulation by anxiolytic and anxiogenic drugs in mice. Brain Res 1999, 839: 74–84.

    Article  CAS  PubMed  Google Scholar 

  61. Maes M, Mihylova I, Kubera M, Bosmans E. Not in the mind but in the cell: increased production of cyclooxygenase-2 and inducible NO synthase in chronic fatigue syndrome. Neuro Endocrinol Lett 2007, 28: 463–469.

    CAS  PubMed  Google Scholar 

  62. Torres RL, Torresi LS, Gamaro GD, Fontella FU, Silveira PP, Moreira JSR, et al. Lipid peroxidation and total radical-trapping potential of the lungs of rats submitted to chronic and subchronic stress. Braz J Med Biol Res 2004, 37: 185–192.

    Article  CAS  PubMed  Google Scholar 

  63. Bilici M, Efe H, Koroglu MA, Uydu HA, Bekaroglu M, Deger O. Antioxidative enzyme activities and lipid peroxidation in major depression: alterations by antidepressant treatments. J Affect Disord 2001, 64: 43–51.

    Article  CAS  PubMed  Google Scholar 

  64. Sapolsky RM. The possibility of neurotoxicity in the hippocampus in major depression: a primer on neuron death. Biol Psychiatry 2000, 48: 755–765.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puneet Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, A., Kumari, B. & Kumar, P. Protective effects of selective and non-selective cyclooxygenase inhibitors in an animal model of chronic stress. Neurosci. Bull. 26, 17–27 (2010). https://doi.org/10.1007/s12264-010-0713-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-010-0713-x

Keywords

关键词

Navigation