Skip to main content

Advertisement

Log in

Chromatin Modifications Associated with Diabetes

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Accelerated rates of vascular complications are associated with diabetes mellitus. Environmental factors including hyperglycaemia contribute to the progression of diabetic complications. Epidemiological and experimental animal studies identified poor glycaemic control as a major contributor to the development of complications. These studies suggest that early exposure to hyperglycaemia can instigate the development of complications that present later in the progression of the disease, despite improved glycaemic control. Recent experiments reveal a striking commonality associated with gene-activating hyperglycaemic events and chromatin modification. The best characterised to date are associated with the chemical changes of amino-terminal tails of histone H3. Enzymes that write specified histone tail modifications are not well understood in models of hyperglycaemia and metabolic memory as well as human diabetes. The best-characterised enzyme is the lysine specific Set7 methyltransferase. The contribution of Set7 to the aetiology of diabetic complications may extend to other transcriptional events through methylation of non-histone substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. International Diabetes Federation. (2009). IDF diabetes atlas (4th ed.). Brussels: International Diabetes Federation.

    Google Scholar 

  2. Shaw, J. E., & Chisholm, D. J. (2003). 1: Epidemiology and prevention of type 2 diabetes and the metabolic syndrome. The Medical Journal of Australia, 179(7), 379–383.

    PubMed  Google Scholar 

  3. El-Osta, A. (2012). Glycemic memory. Current Opinion in Lipidology, 23(1), 24–29.

    Article  PubMed  CAS  Google Scholar 

  4. Brownlee, M. (2001). Biochemistry and molecular cell biology of diabetic complications. Nature, 414(6865), 813–820.

    Article  PubMed  CAS  Google Scholar 

  5. Anonymous (1993). The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. New England Journal of Medicine, 329(14), 977–986.

  6. Prospective, U. K. (1991). Diabetes study (UKPDS). VIII. Study design, progress and performance. Diabetologia, 34(12), 877–890.

    Article  Google Scholar 

  7. The Diabetes Control and Complications Trial (DCCT). (1986). Design and methodologic considerations for the feasibility phase. The DCCT research group. Diabetes, 35(5), 530–545.

    Article  Google Scholar 

  8. Writing Team for the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. (2003). Sustained effect of intensive treatment of type 1 diabetes mellitus on development and progression of diabetic nephropathy: the Epidemiology of Diabetes Interventions and Complications (EDIC) study. JAMA, 290(16), 2159–2167.

    Article  Google Scholar 

  9. Nathan, D. M., Cleary, P. A., Backlund, J. Y., et al. (2005). Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. The New England Journal of Medicine, 353(25), 2643–2653.

    Article  PubMed  Google Scholar 

  10. Cleary, P. A., Orchard, T. J., Genuth, S., et al. (2006). The effect of intensive glycemic treatment on coronary artery calcification in type 1 diabetic participants of the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) study. Diabetes, 55(12), 3556–3565.

    Article  PubMed  CAS  Google Scholar 

  11. Nathan, D. M., Lachin, J., Cleary, P., et al. (2003). Intensive diabetes therapy and carotid intima–media thickness in type 1 diabetes mellitus. The New England Journal of Medicine, 348(23), 2294–2303.

    Article  PubMed  Google Scholar 

  12. Holman, R. R., Paul, S. K., Bethel, M. A., Matthews, D. R., & Neil, H. A. (2008). 10-year follow-up of intensive glucose control in type 2 diabetes. The New England Journal of Medicine, 359(15), 1577–1589.

    Article  PubMed  CAS  Google Scholar 

  13. Writing Team for the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. (2002). Effect of intensive therapy on the microvascular complications of type 1 diabetes mellitus. JAMA, 287(19), 2563–2569.

    Article  Google Scholar 

  14. Engerman, R. L., & Kern, T. S. (1987). Progression of incipient diabetic retinopathy during good glycemic control. Diabetes, 36(7), 808–812.

    Article  PubMed  CAS  Google Scholar 

  15. Hammes, H. P., Klinzing, I., Wiegand, S., Bretzel, R. G., Cohen, A. M., & Federlin, K. (1993). Islet transplantation inhibits diabetic retinopathy in the sucrose-fed diabetic Cohen rat. Investigative Ophthalmology & Visual Science, 34(6), 2092–2096.

    CAS  Google Scholar 

  16. Kowluru, R. A. (2003). Effect of reinstitution of good glycemic control on retinal oxidative stress and nitrative stress in diabetic rats. Diabetes, 52(3), 818–823.

    Article  PubMed  CAS  Google Scholar 

  17. El-Osta, A., Brasacchio, D., Yao, D., et al. (2008). Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. The Journal of Experimental Medicine, 205(10), 2409–2417.

    Article  PubMed  CAS  Google Scholar 

  18. Thurberg, B. L., & Collins, T. (1998). The nuclear factor-kappa B/inhibitor of kappa B autoregulatory system and atherosclerosis. Current Opinion in Lipidology, 9(5), 387–396.

    Article  PubMed  CAS  Google Scholar 

  19. Lewis, P., Stefanovic, N., Pete, J., et al. (2007). Lack of the antioxidant enzyme glutathione peroxidase-1 accelerates atherosclerosis in diabetic apolipoprotein E-deficient mice. Circulation, 115(16), 2178–2187.

    Article  PubMed  CAS  Google Scholar 

  20. Bakker, W., Eringa, E. C., Sipkema, P., & van Hinsbergh, V. W. (2009). Endothelial dysfunction and diabetes: roles of hyperglycemia, impaired insulin signaling and obesity. Cell and Tissue Research, 335(1), 165–189.

    Article  PubMed  CAS  Google Scholar 

  21. Roy, S., Sala, R., Cagliero, E., & Lorenzi, M. (1990). Overexpression of fibronectin induced by diabetes or high glucose: phenomenon with a memory. Proceedings of the National Academy of Sciences of the United States of America, 87(1), 404–408.

    Article  PubMed  CAS  Google Scholar 

  22. Nishikawa, T., Edelstein, D., Du, X. L., et al. (2000). Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature, 404(6779), 787–790.

    Article  PubMed  CAS  Google Scholar 

  23. Brownlee, M. (2005). The pathobiology of diabetic complications: a unifying mechanism. Diabetes, 54(6), 1615–1625.

    Article  PubMed  CAS  Google Scholar 

  24. Ihnat, M. A., Thorpe, J. E., Kamat, C. D., et al. (2007). Reactive oxygen species mediate a cellular ‘memory’ of high glucose stress signalling. Diabetologia, 50(7), 1523–1531.

    Article  PubMed  CAS  Google Scholar 

  25. Turner, B. M. (2002). Cellular memory and the histone code. Cell, 111(3), 285–291.

    Article  PubMed  CAS  Google Scholar 

  26. Bird, A. (2007). Perceptions of epigenetics. Nature, 447(7143), 396–398.

    Article  PubMed  CAS  Google Scholar 

  27. Jenuwein, T., & Allis, C. D. (2001). Translating the histone code. Science, 293(5532), 1074–1080.

    Article  PubMed  CAS  Google Scholar 

  28. Greer, E. L., Maures, T. J., Ucar, D., et al. (2011). Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature, 479(7373), 365–371.

    Article  PubMed  CAS  Google Scholar 

  29. Braunschweig, M., Jagannathan, V., Gutzwiller, A., & Bee, G. (2012). Investigations on transgenerational epigenetic response down the male line in f2 pigs. PLoS One, 7(2), e30583.

    Article  PubMed  CAS  Google Scholar 

  30. Iguchi-Ariga, S. M., & Schaffner, W. (1989). CpG methylation of the cAMP-responsive enhancer/promoter sequence TGACGTCA abolishes specific factor binding as well as transcriptional activation. Genes & Development, 3(5), 612–619.

    Article  CAS  Google Scholar 

  31. Pennings, S., Allan, J., & Davey, C. S. (2005). DNA methylation, nucleosome formation and positioning. Briefings in Functional Genomics & Proteomics, 3(4), 351–361.

    Article  CAS  Google Scholar 

  32. Chodavarapu, R. K., Feng, S., Bernatavichute, Y. V., et al. (2010). Relationship between nucleosome positioning and DNA methylation. Nature, 466(7304), 388–392.

    Article  PubMed  CAS  Google Scholar 

  33. Fuks, F., Hurd, P. J., Wolf, D., Nan, X., Bird, A. P., & Kouzarides, T. (2003). The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. Journal of Biological Chemistry, 278(6), 4035–4040.

    Article  PubMed  CAS  Google Scholar 

  34. Meehan, R. R., Lewis, J. D., & Bird, A. P. (1992). Characterization of MeCP2, a vertebrate DNA binding protein with affinity for methylated DNA. Nucleic Acids Research, 20(19), 5085–5092.

    Article  PubMed  CAS  Google Scholar 

  35. Zhang, Y., Ng, H. H., Erdjument-Bromage, H., Tempst, P., Bird, A., & Reinberg, D. (1999). Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes & Development, 13(15), 1924–1935.

    Article  CAS  Google Scholar 

  36. Maier, S., & Olek, A. (2002). Diabetes: a candidate disease for efficient DNA methylation profiling. Journal of Nutrition, 132(8 Suppl), 2440S–2443S.

    PubMed  CAS  Google Scholar 

  37. Reik, W., Dean, W., & Walter, J. (2001). Epigenetic reprogramming in mammalian development. Science, 293(5532), 1089–1093.

    Article  PubMed  CAS  Google Scholar 

  38. Thompson, R. F., Fazzari, M. J., Niu, H., Barzilai, N., Simmons, R. A., & Greally, J. M. (2010). Experimental intrauterine growth restriction induces alterations in DNA methylation and gene expression in pancreatic islets of rats. Journal of Biological Chemistry, 285(20), 15111–15118.

    Article  PubMed  CAS  Google Scholar 

  39. Einstein, F., Thompson, R. F., Bhagat, T. D., et al. (2010). Cytosine methylation dysregulation in neonates following intrauterine growth restriction. PLoS One, 5(1), e8887.

    Article  PubMed  CAS  Google Scholar 

  40. Kuroda, A., Rauch, T. A., Todorov, I., et al. (2009). Insulin gene expression is regulated by DNA methylation. PLoS One, 4(9), e6953.

    Article  PubMed  CAS  Google Scholar 

  41. Stenvinkel, P., Karimi, M., Johansson, S., et al. (2007). Impact of inflammation on epigenetic DNA methylation—a novel risk factor for cardiovascular disease? Journal of Internal Medicine, 261(5), 488–499.

    Article  PubMed  CAS  Google Scholar 

  42. Brennan, E. P., Ehrich, M., O’Donovan, H., et al. (2010). DNA methylation profiling in cell models of diabetic nephropathy. Epigenetics, 5(5), 396–401.

    Article  PubMed  CAS  Google Scholar 

  43. Chan, Y., Fish, J. E., D’Abreo, C., et al. (2004). The cell-specific expression of endothelial nitric-oxide synthase: a role for DNA methylation. Journal of Biological Chemistry, 279(33), 35087–35100.

    Article  PubMed  CAS  Google Scholar 

  44. Bell, C. G., Teschendorff, A. E., Rakyan, V. K., Maxwell, A. P., Beck, S., & Savage, D. A. (2010). Genome-wide DNA methylation analysis for diabetic nephropathy in type 1 diabetes mellitus. BMC Medical Genomics, 3, 33.

    Article  PubMed  CAS  Google Scholar 

  45. Kim, M., Long, T. I., Arakawa, K., Wang, R., Yu, M. C., & Laird, P. W. (2010). DNA methylation as a biomarker for cardiovascular disease risk. PLoS One, 5(3), e9692.

    Article  PubMed  CAS  Google Scholar 

  46. Hiltunen, M. O., Turunen, M. P., Hakkinen, T. P., et al. (2002). DNA hypomethylation and methyltransferase expression in atherosclerotic lesions. Vascular Medicine, 7(1), 5–11.

    Article  PubMed  Google Scholar 

  47. Hiltunen, M. O., & Yla-Herttuala, S. (2003). DNA methylation, smooth muscle cells, and atherogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 23(10), 1750–1753.

    Article  PubMed  CAS  Google Scholar 

  48. Laukkanen, M. O., Mannermaa, S., Hiltunen, M. O., et al. (1999). Local hypomethylation in atherosclerosis found in rabbit ec-sod gene. Arteriosclerosis, Thrombosis, and Vascular Biology, 19(9), 2171–2178.

    Article  PubMed  CAS  Google Scholar 

  49. Rakyan, V. K., Beyan, H., Down, T. A., et al. (2011). Identification of type 1 diabetes-associated DNA methylation variable positions that precede disease diagnosis. PLoS Genetics, 7(9), e1002300.

    Article  PubMed  CAS  Google Scholar 

  50. Luger, K. (2006). Dynamic nucleosomes. Chromosome Research, 14(1), 5–16.

    Article  PubMed  CAS  Google Scholar 

  51. Strahl, B. D., & Allis, C. D. (2000). The language of covalent histone modifications. Nature, 403(6765), 41–45.

    Article  PubMed  CAS  Google Scholar 

  52. Malik, H. S., & Henikoff, S. (2003). Phylogenomics of the nucleosome. Natural Structural Biology, 10(11), 882–891.

    Article  CAS  Google Scholar 

  53. Kouzarides, T. (2007). Chromatin modifications and their function. Cell, 128(4), 693–705.

    Article  PubMed  CAS  Google Scholar 

  54. An, W. (2007). Histone acetylation and methylation: combinatorial players for transcriptional regulation. Subcellular Biochemistry, 41, 351–369.

    Article  PubMed  Google Scholar 

  55. Roth, S. Y., Denu, J. M., & Allis, C. D. (2001). Histone acetyltransferases. Annual Review of Biochemistry, 70, 81–120.

    Article  PubMed  CAS  Google Scholar 

  56. Shogren-Knaak, M., Ishii, H., Sun, J. M., Pazin, M. J., Davie, J. R., & Peterson, C. L. (2006). Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science, 311(5762), 844–847.

    Article  PubMed  CAS  Google Scholar 

  57. Braunstein, M., Rose, A. B., Holmes, S. G., Allis, C. D., & Broach, J. R. (1993). Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes & Development, 7(4), 592–604.

    Article  CAS  Google Scholar 

  58. Grunstein, M. (1997). Histone acetylation in chromatin structure and transcription. Nature, 389(6649), 349–352.

    Article  PubMed  CAS  Google Scholar 

  59. Eberharter, A., & Becker, P. B. (2002). Histone acetylation: a switch between repressive and permissive chromatin. Second in review series on chromatin dynamics. EMBO Reports, 3(3), 224–229.

    Article  PubMed  CAS  Google Scholar 

  60. Roh, T. Y., Cuddapah, S., & Zhao, K. (2005). Active chromatin domains are defined by acetylation islands revealed by genome-wide mapping. Genes & Development, 19(5), 542–552.

    Article  CAS  Google Scholar 

  61. Roh, T. Y., Wei, G., Farrell, C. M., & Zhao, K. (2007). Genome-wide prediction of conserved and nonconserved enhancers by histone acetylation patterns. Genome Research, 17(1), 74–81.

    Article  PubMed  CAS  Google Scholar 

  62. de Ruijter, A. J., van Gennip, A. H., Caron, H. N., Kemp, S., & van Kuilenburg, A. B. (2003). Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochemistry Journal, 370(Pt 3), 737–749.

    Google Scholar 

  63. Wade, P. A., & Wolffe, A. P. (1997). Histone acetyltransferases in control. Current Biology, 7(2), R82–R84.

    Article  PubMed  CAS  Google Scholar 

  64. Chen, S., Feng, B., George, B., Chakrabarti, R., Chen, M., & Chakrabarti, S. (2010). Transcriptional coactivator p300 regulates glucose-induced gene expression in endothelial cells. American Journal of Physiology, Endocrinology and Metabolism, 298(1), E127–E137.

    Article  CAS  Google Scholar 

  65. Mosley, A. L., & Ozcan, S. (2003). Glucose regulates insulin gene transcription by hyperacetylation of histone h4. Journal of Biological Chemistry, 278(22), 19660–19666.

    Article  PubMed  CAS  Google Scholar 

  66. Mosley, A. L., Corbett, J. A., & Ozcan, S. (2004). Glucose regulation of insulin gene expression requires the recruitment of p300 by the beta-cell-specific transcription factor Pdx-1. Molecular Endocrinology, 18(9), 2279–2290.

    Article  PubMed  CAS  Google Scholar 

  67. Suganuma, T., & Workman, J. L. (2011). Signals and combinatorial functions of histone modifications. Annual Review of Biochemistry, 80, 473–499.

    Article  PubMed  CAS  Google Scholar 

  68. Cheung, P., & Lau, P. (2005). Epigenetic regulation by histone methylation and histone variants. Molecular Endocrinology, 19(3), 563–573.

    Article  PubMed  CAS  Google Scholar 

  69. Zhang, Y., & Reinberg, D. (2001). Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes & Development, 15(18), 2343–2360.

    Article  CAS  Google Scholar 

  70. Qian, C., & Zhou, M. M. (2006). SET domain protein lysine methyltransferases: structure, specificity and catalysis. Cellular and Molecular Life Sciences, 63(23), 2755–2763.

    Article  PubMed  CAS  Google Scholar 

  71. Tschiersch, B., Hofmann, A., Krauss, V., Dorn, R., Korge, G., & Reuter, G. (1994). The protein encoded by the Drosophila position-effect variegation suppressor gene Su(var)3–9 combines domains of antagonistic regulators of homeotic gene complexes. EMBO Journal, 13(16), 3822–3831.

    PubMed  CAS  Google Scholar 

  72. Stassen, M. J., Bailey, D., Nelson, S., Chinwalla, V., & Harte, P. J. (1995). The Drosophila trithorax proteins contain a novel variant of the nuclear receptor type DNA binding domain and an ancient conserved motif found in other chromosomal proteins. Mechanisms of Development, 52(2–3), 209–223.

    Article  PubMed  CAS  Google Scholar 

  73. Jenuwein, T., Laible, G., Dorn, R., & Reuter, G. (1998). SET domain proteins modulate chromatin domains in eu- and heterochromatin. Cellular and Molecular Life Sciences, 54(1), 80–93.

    Article  PubMed  CAS  Google Scholar 

  74. Sims, R. J., 3rd, Nishioka, K., & Reinberg, D. (2003). Histone lysine methylation: a signature for chromatin function. Trends in Genetics, 19(11), 629–639.

    Article  PubMed  CAS  Google Scholar 

  75. Boggs, B. A., Cheung, P., Heard, E., Spector, D. L., Chinault, A. C., & Allis, C. D. (2002). Differentially methylated forms of histone H3 show unique association patterns with inactive human X chromosomes. Nature Genetics, 30(1), 73–76.

    Article  PubMed  CAS  Google Scholar 

  76. Noma, K., Allis, C. D., & Grewal, S. I. (2001). Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science, 293(5532), 1150–1155.

    Article  PubMed  CAS  Google Scholar 

  77. Syreeni, A., El-Osta, A., Forsblom, C., et al. (2011). Genetic examination of SETD7 and SUV39H1/H2 methyltransferases and the risk of diabetes complications in patients with type 1 diabetes. Diabetes, 60(11), 3073–3080.

    Article  PubMed  CAS  Google Scholar 

  78. Wang, H., Cao, R., Xia, L., et al. (2001). Purification and functional characterization of a histone H3-lysine 4-specific methyltransferase. Molecular Cell, 8(6), 1207–1217.

    Article  PubMed  CAS  Google Scholar 

  79. Nishioka, K., Chuikov, S., Sarma, K., et al. (2002). Set9, a novel histone H3 methyltransferase that facilitates transcription by precluding histone tail modifications required for heterochromatin formation. Genes & Development, 16(4), 479–489.

    Article  CAS  Google Scholar 

  80. Zegerman, P., Canas, B., Pappin, D., & Kouzarides, T. (2002). Histone H3 lysine 4 methylation disrupts binding of nucleosome remodeling and deacetylase (NuRD) repressor complex. Journal of Biological Chemistry, 277(14), 11621–11624.

    Article  PubMed  CAS  Google Scholar 

  81. Deering, T. G., Ogihara, T., Trace, A. P., Maier, B., & Mirmira, R. G. (2009). Methyltransferase Set7/9 maintains transcription and euchromatin structure at islet-enriched genes. Diabetes, 58(1), 185–193.

    Article  PubMed  CAS  Google Scholar 

  82. Ogihara, T., Vanderford, N. L., Maier, B., Stein, R. W., & Mirmira, R. G. (2009). Expression and function of Set7/9 in pancreatic islets. Islets, 1(3), 269–272.

    Article  PubMed  Google Scholar 

  83. Francis, J., Chakrabarti, S. K., Garmey, J. C., & Mirmira, R. G. (2005). Pdx-1 links histone H3-Lys-4 methylation to RNA polymerase II elongation during activation of insulin transcription. Journal of Biological Chemistry, 280(43), 36244–36253.

    Article  PubMed  CAS  Google Scholar 

  84. Li, Y., Reddy, M. A., Miao, F., et al. (2008). Role of the histone H3 lysine 4 methyltransferase, SET7/9, in the regulation of NF-kappaB-dependent inflammatory genes. Relevance to diabetes and inflammation. Journal of Biological Chemistry, 283(39), 26771–26781.

    Article  PubMed  CAS  Google Scholar 

  85. Brasacchio, D., Okabe, J., Tikellis, C., et al. (2009). Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes, 58(5), 1229–1236.

    Article  PubMed  CAS  Google Scholar 

  86. Okabe, J., Orlowski, C., Balcerczyk, A., et al. (2012). Distinguishing hyperglycemic changes by Set7 in vascular endothelial cells. Circulation Research, 110, 1067–1076.

    Article  PubMed  CAS  Google Scholar 

  87. Ea, C. K., & Baltimore, D. (2009). Regulation of NF-kappaB activity through lysine monomethylation of p65. Proceedings of the National Academy of Sciences of the United States of America, 106(45), 18972–18977.

    Article  PubMed  CAS  Google Scholar 

  88. Yang, X. D., Huang, B., Li, M., Lamb, A., Kelleher, N. L., & Chen, L. F. (2009). Negative regulation of NF-kappaB action by Set9-mediated lysine methylation of the RelA subunit. EMBO Journal, 28(8), 1055–1066.

    Article  PubMed  CAS  Google Scholar 

  89. Sun, G., Reddy, M. A., Yuan, H., Lanting, L., Kato, M., & Natarajan, R. (2010). Epigenetic histone methylation modulates fibrotic gene expression. Journal of the American Society of Nephrology, 21(12), 2069–2080.

    Article  PubMed  CAS  Google Scholar 

  90. Verrecchia, F., Chu, M. L., & Mauviel, A. (2001). Identification of novel TGF-beta/Smad gene targets in dermal fibroblasts using a combined cDNA microarray/promoter transactivation approach. Journal of Biological Chemistry, 276(20), 17058–17062.

    Article  PubMed  CAS  Google Scholar 

  91. Chung, A. C., Zhang, H., Kong, Y. Z., et al. (2010). Advanced glycation end-products induce tubular CTGF via TGF-beta-independent Smad3 signaling. Journal of the American Society of Nephrology, 21(2), 249–260.

    Article  PubMed  CAS  Google Scholar 

  92. Dennler, S., Itoh, S., Vivien, D., ten Dijke, P., Huet, S., & Gauthier, J. M. (1998). Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO Journal, 17(11), 3091–3100.

    Article  PubMed  CAS  Google Scholar 

  93. Yang, F., Chung, A. C., Huang, X. R., & Lan, H. Y. (2009). Angiotensin II induces connective tissue growth factor and collagen I expression via transforming growth factor-beta-dependent and -independent Smad pathways: the role of Smad3. Hypertension, 54(4), 877–884.

    Article  PubMed  CAS  Google Scholar 

  94. Lan, H. Y. (2011). Diverse roles of TGF-beta/Smads in renal fibrosis and inflammation. International Journal of Biological Sciences, 7(7), 1056–1067.

    Article  PubMed  CAS  Google Scholar 

  95. Fujimoto, M., Maezawa, Y., Yokote, K., et al. (2003). Mice lacking Smad3 are protected against streptozotocin-induced diabetic glomerulopathy. Biochemical and Biophysical Research Communications, 305(4), 1002–1007.

    Article  PubMed  CAS  Google Scholar 

  96. Li, J. H., Huang, X. R., Zhu, H. J., et al. (2004). Advanced glycation end products activate Smad signaling via TGF-beta-dependent and independent mechanisms: implications for diabetic renal and vascular disease. The FASEB Journal, 18(1), 176–178.

    Article  CAS  Google Scholar 

  97. Wang, W., Huang, X. R., Canlas, E., et al. (2006). Essential role of Smad3 in angiotensin II-induced vascular fibrosis. Circulation Research, 98(8), 1032–1039.

    Article  PubMed  CAS  Google Scholar 

  98. Martens, J. H., Verlaan, M., Kalkhoven, E., & Zantema, A. (2003). Cascade of distinct histone modifications during collagenase gene activation. Molecular and Cellular Biology, 23(5), 1808–1816.

    Article  PubMed  CAS  Google Scholar 

  99. Pradhan, S., Chin, H. G., Esteve, P. O., & Jacobsen, S. E. (2009). SET7/9 mediated methylation of non-histone proteins in mammalian cells. Epigenetics, 4(6), 383–387.

    Article  PubMed  CAS  Google Scholar 

  100. Dhayalan, A., Kudithipudi, S., Rathert, P., & Jeltsch, A. (2011). Specificity analysis-based identification of new methylation targets of the SET7/9 protein lysine methyltransferase. Chemical Biology, 18(1), 111–120.

    Article  CAS  Google Scholar 

  101. Chuikov, S., Kurash, J. K., Wilson, J. R., et al. (2004). Regulation of p53 activity through lysine methylation. Nature, 432(7015), 353–360.

    Article  PubMed  CAS  Google Scholar 

  102. Esteve, P. O., Chin, H. G., Benner, J., et al. (2009). Regulation of DNMT1 stability through SET7-mediated lysine methylation in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 106(13), 5076–5081.

    Article  PubMed  Google Scholar 

  103. Subramanian, K., Jia, D., Kapoor-Vazirani, P., et al. (2008). Regulation of estrogen receptor alpha by the SET7 lysine methyltransferase. Molecular Cell, 30(3), 336–347.

    Article  PubMed  CAS  Google Scholar 

  104. Kouskouti, A., Scheer, E., Staub, A., Tora, L., & Talianidis, I. (2004). Gene-specific modulation of TAF10 function by SET9-mediated methylation. Molecular Cell, 14(2), 175–182.

    Article  PubMed  CAS  Google Scholar 

  105. Yang, J., Huang, J., Dasgupta, M., et al. (2010). Reversible methylation of promoter-bound STAT3 by histone-modifying enzymes. Proceedings of the National Academy of Sciences of the United States of America, 107(50), 21499–21504.

    Article  PubMed  CAS  Google Scholar 

  106. Saraheimo, M., Teppo, A. M., Forsblom, C., Fagerudd, J., & Groop, P. H. (2003). Diabetic nephropathy is associated with low-grade inflammation in type 1 diabetic patients. Diabetologia, 46(10), 1402–1407.

    Article  PubMed  CAS  Google Scholar 

  107. Shikano, M., Sobajima, H., Yoshikawa, H., et al. (2000). Usefulness of a highly sensitive urinary and serum IL-6 assay in patients with diabetic nephropathy. Nephron, 85(1), 81–85.

    Article  PubMed  CAS  Google Scholar 

  108. Tuttle, H. A., Davis-Gorman, G., Goldman, S., Copeland, J. G., & McDonagh, P. F. (2004). Proinflammatory cytokines are increased in type 2 diabetic women with cardiovascular disease. Journal of Diabetes and its Complications, 18(6), 343–351.

    Article  PubMed  Google Scholar 

  109. Mirza, S., Hossain, M., Mathews, C., et al. (2012). Type 2-diabetes is associated with elevated levels of TNF-alpha, IL-6 and adiponectin and low levels of leptin in a population of Mexican Americans: a cross-sectional study. Cytokine, 57(1), 136–142.

    Article  PubMed  CAS  Google Scholar 

  110. Berthier, C. C., Zhang, H., Schin, M., et al. (2009). Enhanced expression of Janus kinase-signal transducer and activator of transcription pathway members in human diabetic nephropathy. Diabetes, 58(2), 469–477.

    Article  PubMed  CAS  Google Scholar 

  111. Simon, A. R., Rai, U., Fanburg, B. L., & Cochran, B. H. (1998). Activation of the JAK-STAT pathway by reactive oxygen species. American Journal of Physiology, 275(6 Pt 1), C1640–C1652.

    PubMed  CAS  Google Scholar 

  112. Huang, J. S., Guh, J. Y., Chen, H. C., Hung, W. C., Lai, Y. H., & Chuang, L. Y. (2001). Role of receptor for advanced glycation end-product (RAGE) and the JAK/STAT-signaling pathway in AGE-induced collagen production in NRK-49F cells. Journal of Cellular Biochemistry, 81(1), 102–113.

    Article  PubMed  CAS  Google Scholar 

  113. Lu, T. C., Wang, Z. H., Feng, X., et al. (2009). Knockdown of Stat3 activity in vivo prevents diabetic glomerulopathy. Kidney International, 76(1), 63–71.

    Article  PubMed  CAS  Google Scholar 

  114. Rawlings, J. S., Rosler, K. M., & Harrison, D. A. (2004). The JAK/STAT signaling pathway. Journal of Cell Science, 117(Pt 8), 1281–1283.

    Article  PubMed  CAS  Google Scholar 

  115. Yasukawa, H., Ohishi, M., Mori, H., et al. (2003). IL-6 induces an anti-inflammatory response in the absence of SOCS3 in macrophages. Nature Immunology, 4(6), 551–556.

    Article  PubMed  CAS  Google Scholar 

  116. Ortiz-Munoz, G., Lopez-Parra, V., Lopez-Franco, O., et al. (2010). Suppressors of cytokine signaling abrogate diabetic nephropathy. Journal of the American Society of Nephrology, 21(5), 763–772.

    Article  PubMed  CAS  Google Scholar 

  117. Gaughan, L., Stockley, J., Wang, N., et al. (2011). Regulation of the androgen receptor by SET9-mediated methylation. Nucleic Acids Research, 39(4), 1266–1279.

    Article  PubMed  CAS  Google Scholar 

  118. O’Meara, N. M., Blackman, J. D., Ehrmann, D. A., et al. (1993). Defects in beta-cell function in functional ovarian hyperandrogenism. Journal of Clinical Endocrinology and Metabolism, 76(5), 1241–1247.

    Article  PubMed  Google Scholar 

  119. Dunaif, A., & Finegood, D. T. (1996). beta-Cell dysfunction independent of obesity and glucose intolerance in the polycystic ovary syndrome. Journal of Clinical Endocrinology and Metabolism, 81(3), 942–947.

    Article  PubMed  CAS  Google Scholar 

  120. Liu, S., Navarro, G., & Mauvais-Jarvis, F. (2010). Androgen excess produces systemic oxidative stress and predisposes to beta-cell failure in female mice. PLoS One, 5(6), e11302.

    Article  PubMed  CAS  Google Scholar 

  121. Pirola, L., Balcerczyk, A., Tothill, R. W., et al. (2011). Genome-wide analysis distinguishes hyperglycemia regulated epigenetic signatures of primary vascular cells. Genome Research, 21(10), 1601–1615.

    Article  PubMed  CAS  Google Scholar 

  122. Giacco, F., & Brownlee, M. (2010). Oxidative stress and diabetic complications. Circulation Research, 107(9), 1058–1070.

    Article  PubMed  CAS  Google Scholar 

  123. Noyman, I., Marikovsky, M., Sasson, S., et al. (2002). Hyperglycemia reduces nitric oxide synthase and glycogen synthase activity in endothelial cells. Nitric Oxide, 7(3), 187–193.

    Article  PubMed  CAS  Google Scholar 

  124. Zhang, Q., Malik, P., Pandey, D., et al. (2008). Paradoxical activation of endothelial nitric oxide synthase by NADPH oxidase. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(9), 1627–1633.

    Article  PubMed  CAS  Google Scholar 

  125. Du, X., Edelstein, D., Obici, S., Higham, N., Zou, M. H., & Brownlee, M. (2006). Insulin resistance reduces arterial prostacyclin synthase and eNOS activities by increasing endothelial fatty acid oxidation. The Journal of Clinical Investigation, 116(4), 1071–1080.

    Article  PubMed  CAS  Google Scholar 

  126. Shen, X., Zheng, S., Metreveli, N. S., & Epstein, P. N. (2006). Protection of cardiac mitochondria by overexpression of MnSOD reduces diabetic cardiomyopathy. Diabetes, 55(3), 798–805.

    Article  PubMed  CAS  Google Scholar 

  127. Otero, P., Bonet, B., Herrera, E., & Rabano, A. (2005). Development of atherosclerosis in the diabetic BALB/c mice. Prevention with vitamin E administration. Atherosclerosis, 182(2), 259–265.

    Article  PubMed  CAS  Google Scholar 

  128. Zhang, Y., Wada, J., Hashimoto, I., et al. (2006). Therapeutic approach for diabetic nephropathy using gene delivery of translocase of inner mitochondrial membrane 44 by reducing mitochondrial superoxide production. Journal of the American Society of Nephrology, 17(4), 1090–1101.

    Article  PubMed  CAS  Google Scholar 

  129. DeRubertis, F. R., Craven, P. A., & Melhem, M. F. (2007). Acceleration of diabetic renal injury in the superoxide dismutase knockout mouse: effects of tempol. Metabolism, 56(9), 1256–1264.

    Article  PubMed  CAS  Google Scholar 

  130. Kowluru, R. A., Kowluru, V., Xiong, Y., & Ho, Y. S. (2006). Overexpression of mitochondrial superoxide dismutase in mice protects the retina from diabetes-induced oxidative stress. Free Radical Biology & Medicine, 41(8), 1191–1196.

    Article  CAS  Google Scholar 

  131. Vincent, A. M., Russell, J. W., Sullivan, K. A., et al. (2007). SOD2 protects neurons from injury in cell culture and animal models of diabetic neuropathy. Experimental Neurology, 208(2), 216–227.

    Article  PubMed  CAS  Google Scholar 

  132. Kurash, J. K., Lei, H., Shen, Q., et al. (2008). Methylation of p53 by Set7/9 mediates p53 acetylation and activity in vivo. Molecular Cell, 29(3), 392–400.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge grant and fellowship support from the Juvenile Diabetes Research Foundation International, the Diabetes Australia Research Trust, the National Health and Medical Research Council (NHMRC) and the National Heart Foundation of Australia. STK is supported by an Australian Postgraduate Award. AE-O is a senior research fellow supported by the NHMRC. This study is supported in part by the Victorian Government’s Operational Infrastructure Support Program.

Conflict of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Assam El-Osta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keating, S.T., El-Osta, A. Chromatin Modifications Associated with Diabetes. J. of Cardiovasc. Trans. Res. 5, 399–412 (2012). https://doi.org/10.1007/s12265-012-9380-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-012-9380-9

Keywords

Navigation