Skip to main content

Advertisement

Log in

Early Anti-inflammatory and Pro-angiogenic Myocardial Effects of Intravenous Serelaxin Infusion for 72 H in an Experimental Rat Model of Acute Myocardial Infarction

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Sprague Dawley rats were subjected to acute myocardial infarction (AMI) by permanent ligation of the left anterior descending coronary artery. At the time of AMI, a subcutaneous mini-osmotic pump was implanted and animals were randomized into three groups, according to the intravenous therapy received during the first 72 h: placebo-treated (saline), serelaxin10-treated (SRLX10 = 10 μg/kg/day), or serelaxin30-treated (SRLX30 = 30 μg/kg/day). Treatment with SRLX30 reduced the expression of inflammatory cytokines and chemokines, as well as the infiltration of macrophages, and increased the expression of pro-angiogenic markers and vessel density in the infarcted myocardium after 7 days. SRLX30 did not reduce early myocardial fibrosis but reduced myocardial levels of sST2 and galectin-3. No significant effects were observed with SRLX10 treatment. A significant correlation was observed between plasma levels of serelaxin and effect measures. The results suggest serelaxin has a protective effect in early processes of cardiac remodeling after AMI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AMI:

Acute myocardial infarction

α-SMA:

Alpha smooth muscle actin

GADPH:

Glyceraldehyde 3-phosphate dehydrogenase

IL:

Interleukin

LVEF:

Left ventricle ejection fraction

MCP-1:

Monocyte chemoattractant protein 1

MMP:

Matrix metalloproteinase

RT-PCR:

Reverse transcription polymerase chain reaction

sST2:

Soluble isoform of suppression of tumorigenicity 2

TGF-β:

Transforming growth factor beta

TNF-α:

Tumor necrosis factor alpha

VEGF:

Vascular endothelial growth factor

References

  1. Bathgate, R. A., Halls, M. L., van der Westhuizen, E. T., Callander, G. E., Kocan, M., & Summers, R. J. (2013). Relaxin family peptides and their receptors. Physiological Reviews, 93, 405–480.

    Article  CAS  Google Scholar 

  2. Raleigh, J. M. V., Toldo, S., Das, A., Abbate, A., & Salloum, F. N. (2016). Relaxin’ the heart: a novel therapeutic modality. Journal of Cardiovascular Pharmacology and Therapeutics, 21, 353–362.

    Article  Google Scholar 

  3. Teerlink, J. R., Metra, M., Felker, G. M., Ponikowski, P., Voors, A. A., Weatherley, B. D., Marmor, A., Katz, A., Grzybowski, J., Unemori, E., Teichman, S. L., & Cotter, G. (2009). Relaxin for the treatment of patients with acute heart failure (pre-RELAX-AHF): a multicentre, randomised, placebo-controlled, parallel-group, dose-finding phase IIb study. Lancet, 373, 1429–1439.

    Article  CAS  Google Scholar 

  4. Teerlink, J. R., Cotter, G., Davison, B. A., Felker, G. M., Filippatos, G., Greenberg, B. H., Ponikowski, P., Unemori, E., Voors, A. A., Adams Jr., K. F., Dorobantu, A. M. I., Grinfeld, L. R., Jondeau, G., Marmor, A., Masip, J., Pang, P. S., Werdan, K., Teichman, S. L., Trapani, A., Bush, C. A., Saini, R., Schumacher, C., Severin, T. M., & Metra, M. (2013). RELAXin in Acute Heart Failure (RELAX-AHF) investigators. Serelaxin, recombinant human relaxin-2, for treatment of acute heart failure (RELAX-AHF): a randomised, placebo-controlled trial. Lancet, 381, 29–39.

    Article  CAS  Google Scholar 

  5. Teerlink, J. R., Voors, A. A., Ponikowski, P., Pang, P. S., Greenberg, B. H., Filippatos, G., Felker, G. M., Davison, B. A., Cotter, G., Gimpelewicz, C., Boer-Martins, L., Wernsing, M., Hua, T. A., Severin, T., & Metra, M. (2017). Serelaxin in addition to standard therapy in acute heart failure: rationale and design of the RELAX-AHF-2 study. European Journal of Heart Failure, 19, 800–809.

    Article  CAS  Google Scholar 

  6. Masini, E., Bani, D., Bello, M. G., Bigazzi, M., Mannaioni, P. F., & Sacchi, T. B. (1997). Relaxin counteracts myocardial damage induced by ischemia-reperfusion in isolated guinea pig hearts: evidence for an involvement of nitric oxide. Endocrinology, 138, 4713–4720.

    Article  CAS  Google Scholar 

  7. Bani, D., Masini, E., Bello, M. G., Bigazzi, M., & Sacchi, T. B. (1998). Relaxin protects against myocardial injury caused by ischemia and reperfusion in rat heart. The American Journal of Pathology, 152, 1367–1376.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Perna, A. M., Masini, E., Nistri, S., Briganti, V., Chiappini, L., Stefano, P., Bigazzi, M., Pieroni, C., Bani Sacchi, T., & Bani, D. (2005). Novel drug development opportunity for relaxin in acute myocardial infarction: evidences from a swine model. The FASEB Journal, 19, 1525–1527.

    Article  CAS  Google Scholar 

  9. Nistri, S., Cinci, L., Perna, A.-M., Masini, E., Mastroianni, R., & Bani, D. (2008). Relaxin induces mast cell inhibition and reduces ventricular arrhythmias in a swine model of acute myocardial infarction. Pharmacological Research, 57, 43–48.

    Article  CAS  Google Scholar 

  10. Bonacchi, M., Nistri, S., Nanni, C., Gelsomino, S., Pini, A., Cinci, L., Maiani, M., Zecchi-Orlandini, S., Lorusso, R., Fanti, S., Silvertown, J., & Bani, D. (2009). Functional and histopathological improvement of the post-infarcted rat heart upon myoblast cell grafting and relaxin therapy. Journal of Cellular and Molecular Medicine, 13, 3437–3448.

    Article  Google Scholar 

  11. Di Lascio, G., Harmelin, G., Targetti, M., Nanni, C., Bianchi, G., Gasbarri, T., Gelsomino, S., Bani, D., Orlandini, S. Z., & Bonacchi, M. (2012). Cellular retrograde cardiomyoplasty and relaxin therapy for postischemic myocardial repair in a rat model. Texas Heart Institute Journal, 39, 488–499.

    PubMed  PubMed Central  Google Scholar 

  12. Samuel, C. S., Cendrawan, S., Gao, X. M., Ming, Z., Zhao, C., Kiriazis, H., Xu, Q., Tregear, G. W., Bathgate, R. A., & Du, X. J. (2011). Relaxin remodels fibrotic healing following myocardial infarction. Laboratory Investigation, 91, 675–690.

    Article  CAS  Google Scholar 

  13. Collino, M., Rogazzo, M., Pini, A., Benetti, E., Rosa, A. C., Chiazza, F., Fantozzi, R., Bani, D., & Masini, E. (2013). Acute treatment with relaxin protects the kidney against ischaemia/reperfusion injury. Journal of Cellular and Molecular Medicine, 17, 1494–1505.

    Article  CAS  Google Scholar 

  14. Alexiou, K., Matschke, K., Westphal, A., Stangl, K., & Dschietzig, T. (2010). Relaxin is a candidate drug for lung preservation: relaxin-induced protection of rat lungs from ischemia-reperfusion injury. The Journal of Heart and Lung Transplantation, 29, 454–460.

    Article  Google Scholar 

  15. Masini, E., Cuzzocrea, S., Mazzon, E., Muià, C., Vannacci, A., Fabrizi, F., & Bani, D. (2006). Protective effects of relaxin in ischemia/reperfusion-induced intestinal injury due to splanchnic artery occlusion. British Journal of Pharmacology, 148, 1124–1132.

    Article  CAS  Google Scholar 

  16. Chen, W., & Frangogiannis, N. G. (1833). Fibroblasts in post-infarction inflammation and cardiac repair. Biochimica et Biophysica Acta, 2013, 945–953.

    Google Scholar 

  17. Lekgabe, E. D., Kiriazis, H., Zhao, C., Xu, Q., Moore, X. L., Su, Y., Bathgate, R. A., Du, X. J., & Samuel, C. S. (2005). Relaxin reverses cardiac and renal fibrosis in spontaneously hypertensive rats. Hypertension, 46, 412–418.

    Article  CAS  Google Scholar 

  18. Bathgate, R. A., Lekgabe, E. D., McGuane, J. T., Su, Y., Pham, T., Ferraro, T., Layfield, S., Hannan, R. D., Thomas, W. G., Samuel, C. S., & Du, X. J. (2008). Adenovirus-mediated delivery of relaxin reverses cardiac fibrosis. Molecular and Cellular Endocrinology, 280, 30–38.

    Article  CAS  Google Scholar 

  19. Gu, H. P., Lin, S., Xu, M., Yu, H. Y., Du, X. J., Zhang, Y. Y., Yuan, G., & Gao, W. (2012). Up-regulating relaxin expression by G-quadruplex interactive ligand to achieve antifibrotic action. Endocrinology, 153, 3692–3700.

    Article  CAS  Google Scholar 

  20. Chan, L. J., Rosengren, K. J., Layfield, S. L., Bathgate, R. A., Separovic, F., Samuel, C. S., Hossain, M. A., & Wade, J. D. (2012). Identification of key residues essential for the structural fold and receptor selectivity within the A-chain of human gene-2 (H2) relaxin. The Journal of Biological Chemistry, 287, 41152–41164.

    Article  CAS  Google Scholar 

  21. Pascual-Figal, D. A., Lax, A., Perez-Martinez, M. T., Del Carmen, A.-L. M., Sanchez-Mas, J., & Network, G. R. E. A. T. (2016). Clinical relevance of sST2 in cardiac diseases. Clinical Chemistry and Laboratory Medicine, 54, 29–35.

    Article  CAS  Google Scholar 

  22. Meijers, W. C., van der Velde, A. R., Pascual-Figal, D. A., & de Boer, R. A. (2015). Galectin-3 and post-myocardial infarction cardiac remodeling. European Journal of Pharmacology, 763, 115–121.

    Article  CAS  Google Scholar 

  23. Kakkar, R., & Lee, R. T. (2008). The IL-33/ST2 pathway: therapeutic target and novel biomarker. Nature Reviews. Drug Discovery, 7, 827–840.

    Article  CAS  Google Scholar 

  24. Seki, K., Sanada, S., Kudinova, A. Y., Steinhauser, M. L., Handa, V., Gannon, J., & Lee, R. T. (2009). Interleukin-33 prevents apoptosis and improves survival after experimental myocardial infarction through ST2 signaling. Circulation. Heart Failure, 2, 684–691.

    Article  CAS  Google Scholar 

  25. Teerlink, J., & Metra, M. (2017). RELAX-AHF-2: serelaxin in acute heart failure. Paris: Heart Failure and the 4th World Congress on Acute Heart Failure https://www.escardio.org/The-ESC/Press-Office/Press-releases/serelaxin-fails-to-meet-primary-endpoints-in-phase-3-relax-ahf-2-trial. Accessed 20 June 2017.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domingo A. Pascual-Figal.

Ethics declarations

Clinical Relevance

The intravenous infusion of serelaxin for 72 h after acute myocardial infarction might have a favorable effect on early processes of myocardial remodeling, in a dose-dependent manner.

Funding

This study was supported by a grant from Novartis (Switzerland) and was fully performed in the “Instituto Murciano de Investigación Biomética (IMIB),” Universidad de Murcia (Murcia, Spain). This study was partly supported by a grant from the Instituto de Salud Carlos III, Madrid, Spain (PI14/01637). Dr. Lax was a recipient of a research fellowship from the Instituto de Salud Carlos III, Madrid, Spain (CD13/00032). Dr. Pascual Figal was a recipient of a Research Intensification Programme from the Instituto de Salud Carlos III (ISCIII), Madrid, Spain (INT 15/00108 and 16/00172).

Conflict of Interest

Dr. Pascual-Figal and Dr. de Boer received speaker fees from Novartis. All other authors report no conflicts of interest.

Human and Animal Rights and Informed Consent

No human studies were carried out by the authors for this article.

Additional information

Associate Editor Saptarsi Haldar oversaw the review of this article.

Electronic supplementary material

ESM 1

(DOC 77 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanchez-Mas, J., Lax, A., Asensio-Lopez, M.C. et al. Early Anti-inflammatory and Pro-angiogenic Myocardial Effects of Intravenous Serelaxin Infusion for 72 H in an Experimental Rat Model of Acute Myocardial Infarction. J. of Cardiovasc. Trans. Res. 10, 460–469 (2017). https://doi.org/10.1007/s12265-017-9761-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-017-9761-1

Keywords

Navigation