Skip to main content

Advertisement

Log in

Differentiating Athlete’s Heart from Left Ventricle Cardiomyopathies

  • Review Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Imaging techniques have allowed knowing the structural adaptative changes observed in the hearts of highly trained athletes. Athletes can develop very marked structural changes and the need may rise for a differential diagnosis with real cardiomyopathy. In this chapter, authors review the physiologic and morphologic features associated with athletic training and the keys to differentiate normal adaptive athlete’s heart from mild or initial expression forms of left-heart side cardiomyopathies such as hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), and left ventricle non-compaction (LVNC).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Galderisi, M., Cardim, N., D’Andrea, A., Bruder, O., Cosyns, B., Davin, L., et al. (2015). The multi-modality cardiac imaging approach to the athlete’s heart: an expert consensus of the European Association of Cardiovascular Imaging. European Heart Journal Cardiovascular Imaging, 16(4), 353–353r.

    Article  PubMed  Google Scholar 

  2. Brosnan, M. J., & Rakhit, D. (2018). Differentiating athlete’s heart from cardiomyopathies. The Left Side Hear Lung Circulation., 1–10.

  3. Elliott, P. M., Anastasakis, A., Borger, M. A., Borggrefe, M., Cecchi, F., Charron, P., et al. (2015). Guía de práctica clínica de la ESC 2014 sobre el diagnóstico y manejo de la miocardiopatía hipertrófica. Revista Española de Cardiología, 68(1), 63.e1–63.e52.

    Article  Google Scholar 

  4. Sharma, S., Drezner, J. A., Baggish, A., Papadakis, M., Wilson, M. G., Prutkin, J. M., et al. (2017). International recommendations for electrocardiographic interpretation in athletes. Journal of the American College of Cardiology, 69(8), 1057–1075.

    Article  PubMed  Google Scholar 

  5. Calore, C., Zorzi, A., Sheikh, N., Nese, A., Facci, M., Malhotra, A., et al. (2016). Electrocardiographic anterior T-wave inversion in athletes of different ethnicities: differential diagnosis between athlete’s heart and cardiomyopathy. European Heart Journal, 37(32), 2515–2527.

    Article  PubMed  Google Scholar 

  6. Pelliccia, A., Maron, B. J., & Spataro, A. (1991 Jan 31). The upper limit of physiologic cardiac hypertrophy in highly trained elite athletes. The New England Journal of Medicine, 324(5), 295–301.

    Article  CAS  PubMed  Google Scholar 

  7. Boraita, A., Heras, M. E., Morales, F., Marina-Breysse, M., Canda, A., Rabadan, M., et al. (2016). Reference values of aortic root in male and female white elite athletes according to sport. Circulation Cardiovascular Imaging, 9(10), 1–10.

    Article  Google Scholar 

  8. Papadakis, M., Carre, F., Kervio, G., Rawlins, J., Panoulas, V. F., Chandra, N., et al. (2011). The prevalence, distribution, and clinical outcomes of electrocardiographic repolarization patterns in male athletes of African/Afro-Caribbean origin. European Heart Journal, 32(18), 2304–2313.

    Article  PubMed  Google Scholar 

  9. Sheikh, N., Papadakis, M., Schnell, F., Panoulas, V., Malhotra, A., & Wilson, M. (2015). Cardiomyopathies clinical profile of athletes with hypertrophic cardiomyopathy. Circulation. Cardiovascular Imaging, 8(7), e003454.

    Article  PubMed  Google Scholar 

  10. Grazioli, G., Usín, D., Trucco, E., Sanz, M., & Vidal, B. (2016). ScienceDirect Differentiating hypertrophic cardiomyopathy from athlete’s heart : an electrocardiographic and echocardiographic approach. Journal of Electrocardiology, 49(4), 539–544.

    Article  PubMed  Google Scholar 

  11. Caselli, S., Maron, M. S., Urbano-moral, J. A., Pandian, N. G., Maron, B. J., & Pelliccia, A. (2014). Differentiating left ventricular hypertrophy in athletes from that in patients with hypertrophic cardiomyopathy. The American Journal of Cardiology, 114(9), 1383–1389.

    Article  PubMed  Google Scholar 

  12. Caselli, S., Di Paolo, F. M., Pisicchio, C., & Pandian, N. G. (2012). Patterns of left ventricular diastolic function in Olympic athletes. Journal of the American Society of Echocardiography, 28(2), 236–244.

    Article  Google Scholar 

  13. Caso, P., Andrea, A. D., Galderisi, M., Liccardo, B., Severino, S., De Simone, L., et al. (2000). Pulsed Doppler tissue imaging in endurance athletes : relation between left ventricular preload and myocardial regional diastolic function. The American Journal of Cardiology, 85(9), 1131–1136.

    Article  CAS  PubMed  Google Scholar 

  14. Finocchiaro, G., Haddad, F., Pavlovic, A., Magavern, E., Sinagra, G., Knowles, J. W., et al. (2014). How does morphology impact on diastolic function in hypertrophic cardiomyopathy ? A single centre experience. BMJ Open, 4(6), e004814.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Finocchiaro, G., Dhutia, H., Silva, A. D., Malhotra, A., Sheikh, N., & Narain, R. Role of Doppler diastolic parameters in differentiating physiological left ventricular hypertrophy from hypertrophic cardiomyopathy. Journal of the American Society of Echocardiography, 31(5), 606–613.e1.

  16. Swoboda PP, Erhayiem B, Mcdiarmid, A.K., Lancaster, R.E., Lyall, G.K., Dobson, L.E., et al.. (2016), Relationship between cardiac deformation parameters measured by cardiovascular magnetic resonance and aerobic fitness in endurance athletes. Journal of Cardiovascular Magnetic Resonance [Internet];1–8. Available from:

  17. Matelot, D., Daudin, M., Kervio, G., Mabo, P., & Donal, E. (2017). Mechanical dispersion by strain echocardiography : a novel tool to diagnose hypertrophic cardiomyopathy in athletes. Journal of the American Society of Echocardiography, 30(3), 251–261.

    Article  PubMed  Google Scholar 

  18. Cikes, M., Sutherland, G. R., Anderson, L. J., & Bijnens, B. H. (2010). The role of echocardiographic deformation imaging in hypertrophic myopathies. Nature Publishing Group, 7(7), 384–396.

    CAS  Google Scholar 

  19. Maron, M. S., Maron, B. J., Harrigan, C., Buros, J., Gibson, C. M., Olivotto, I., et al. (2009). Hypertrophic cardiomyopathy phenotype revisited after 50 years with cardiovascular magnetic resonance. JACC:Journal of the American College of Cardiology, 54(3), 220–228.

    Article  PubMed  Google Scholar 

  20. Petersen, S. E., Selvanayagam, J. B., Francis, J. M., Myerson, S. G., Casadei, B., Wiesmann, F., et al. (2005). Differentiation of athlete’s heart from pathological forms of cardiac hypertrophy by means of geometric indices derived from cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 7(3), 551–821.

    Article  PubMed  Google Scholar 

  21. Harrigan, C. J., Appelbaum, E., Maron, B. J., Buros, J. L., Gibson, C. M., Lesser, J. R., et al. (2008). Significance of papillary muscle abnormalities identified by cardiovascular magnetic resonance in hypertrophic cardiomyopathy. The American Journal of Cardiology, 101(5), 668–673.

    Article  PubMed  Google Scholar 

  22. Moon, J. C. C., Bc, H., Mckenna, W. J., Mccrohon, J. A., Elliott, P. M., Smith, G. C., et al. (2003). Toward clinical risk assessment in hypertrophic cardiomyopathy with gadolinium cardiovascular magnetic resonance. Journal of the American College of Cardiology, 41(9), 1561–1567.

    Article  PubMed  Google Scholar 

  23. Carr-white, G., Razavi, R., Schaeffter, T., & Nagel, E. (2013). Native T1 Mapping in differentiation of normal myocardium from diffuse disease in hypertrophic and dilated cardiomyopathy. JCMG, 6(4), 475–484.

    Google Scholar 

  24. Mcdiarmid, A. K., Swoboda, P. P., Erhayiem, B., Lancaster, R. E., Lyall, G. K., Broadbent, D. A., et al. (2016). Ventricular structure and function athletic cardiac adaptation in males is a consequence of elevated myocyte mass. Circulation. Cardiovascular Imaging, 9(4), e003579.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Heart, A. (2016). Letters assessing myocardial extracellular volume by T1 mapping to distinguish hypertrophic cardiomyopathy from closure in patients with contraindications to oral anticoagulation. Journal of the American College of Cardiology, 67(18), 2189–2190.

    Article  Google Scholar 

  26. Ackerman, M. J., Priori, S. G., Willems, S., Berul, C., Brugada, R., Calkins, H., et al. (2011 Aug). HRS / EHRA EXPERT CONSENSUS STATEMENT HRS / EHRA Expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies. Europace., 13(8), 1077–1109.

    Article  PubMed  Google Scholar 

  27. Maron, B. J., Pelliccia, A., Spataro, A., & Granata, M. (1993). Reduction in left ventricular wall thickness after deconditioning in highly trained Olympic athletes. British Heart Journal, 69(2), 125–81993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pinto, Y. M., Elliott, P. M., Arbustini, E., Adler, Y., Anastasakis, A., Böhm, M., et al. (2016). Proposal for a revised definition of dilated cardiomyopathy, hypokinetic non-dilated cardiomyopathy, and its implications for clinical practice: a position statement of the ESC working group on myocardial and pericardial diseases. European Heart Journal, 37(23), 1850–1858.

    Article  PubMed  Google Scholar 

  29. Pelliccia, A., Culasso, F., Di Paolo, F. M., & Maron, B. J. (1999). Physiologic left ventricular cavity dilatation in elite athletes. Annals of Internal Medicine, 130(1), 23–31.

    Article  CAS  PubMed  Google Scholar 

  30. Abergel, E., Chatellier, G., Hagege, A. A., Oblak, A., Linhart, A., & Ducardonnet, A. (2004). Serial left ventricular adaptations in world-class professional cyclists implications for disease screening and follow-up. Journal of the American College of Cardiology, 44(1), 5–10.

    Article  Google Scholar 

  31. Elliott, P. (2000). Diagnosis and management of dilated cardiomyopathy. Heart., 84(1), 106–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cristina, M., Abduch, D., Salgo, I., Tsang, W., Luiz, M., Vieira, C., et al. (2012). Original article myocardial deformation by speckle tracking in severe dilated cardiomyopathy. Arquivos Brasileiros de Cardiologia, 99(3), 834–843.

    Article  Google Scholar 

  33. Forsythe, L., (2018) Global longitudinal strain does not help to differentiate between athlete’s heart and pathology in athletes with low LEVF. European Heart Journal 4088677.

  34. Ase, E., Lancellotti, P., Pellikka, P. A., Budts, W., Chaudhry, F. A., Donal, E., et al. (2016). The clinical use of stress echocardiography in non- ischaemic heart disease : recommendations from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. European Heart Journal Cardiovascular Imaging, 17(11), 1191–1229.

    Article  Google Scholar 

  35. Schairer, J. R., Stein, P. D., Keteyian, S., Fedel, F., Ehrman, J., Alam, M., et al. (1992). Left ventricular response to submaximal exercise in endurance-trained athletes and sedentary adults. The American Journal of Cardiology, 70(9), 930–933.

    Article  CAS  PubMed  Google Scholar 

  36. Abernethy, W. B., Choo, J. K., & Hutter, A. M. (2003). Echocardiographic characteristics of professional football players. Journal of the American College of Cardiology, 41(2), 2–6.

    Article  Google Scholar 

  37. Stefani, L., Toncelli, L., Di Tante, V., Concetta, M., Vono, R., Cappelli, B., et al. (2008). Supernormal functional reserve of apical segments in elite soccer players : an ultrasound speckle tracking handgrip stress study. Cardiovascular Ultrasound, 8, 1–8.

    Google Scholar 

  38. Mordi, I., Carrick, D., Bezerra, H., & Tzemos, N. (2015). Utility of native T1 mapping to differentiate between athlete’s heart and non-ischemic dilated cardiomyopathy. J Cardiovasc Magn Reson [Internet], 17(Suppl 1), P379.

    Article  Google Scholar 

  39. Claessen, G., Bogaert, J., Claeys, M., Pattyn, N., de Buck, F., Dymarkowski, S., et al, (2018). Exercise cardiac magnetic resonance to differentiate athlete’s heart from structural heart disease. European Heart Journal Cardiovascular Imaging, 1-9.

  40. Chin, T.K., Perloff, J.K., Williams, R.G., Jue, K., Mohrmann, R.. Isolated noncompaction of left ventricular myocardium a study of eight cases. Circulation, 507–13.

  41. Wan, J., Zhao, S., Cheng, H., Lu, M., Jiang, S., Yin, G., et al. (2013). Varied distributions of late gadolinium enhancement found among patients meeting cardiovascular magnetic resonance criteria for isolated left ventricular non-compaction. Journal of Cardiovascular Magnetic Resonance, 15(1), 1.

    Article  Google Scholar 

  42. Jenni, R., Oechslin, E., Schneider, J., Jost, C. A., & Kaufmann, P. A. (2001). Echocardiographic and pathoanatomical characteristics of isolated left ventricular non-compaction: a step towards classification as a distinct cardiomyopathy. Heart, 666–671.

  43. Stöllberger, C., Gerecke, B., Finsterer, J., & Engberding, R. (2013). Refinement of echocardiographic criteria for left ventricular noncompaction. International Journal of Cardiology, 165(3), 463–467.

    Article  PubMed  Google Scholar 

  44. Xu, Z., Zhu, W., Wang, C., Huang, L., Zhou, Q., Hu, J., et al. (2017). Genotype-phenotype relationship in patients with arrhythmogenic right ventricular cardiomyopathy caused by desmosomal gene mutations: a systematic review and meta-analysis. Scientific Reports, 7(January), 1–8.

    Google Scholar 

  45. How, M., Measure, W.. (2013) CMR and LV noncompaction *, JACC Cardiovascular, 6(9). imagin. Vol 6, No 9, 2013.

  46. Gati, S., Chandra, N., Bennett, R. L., Reed, M., Kervio, G., Panoulas, V. F., et al. (2013). Increased left ventricular trabeculation in highly trained athletes: do we need more stringent criteria for the diagnosis of left ventricular non-compaction in athletes ? Heart, 1–8.

  47. Caselli, S., Ferreira, D., Kanawati, E., Di, F., Pisicchio, C., Attenhofer, C., et al. (2016). Prominent left ventricular trabeculations in competitive athletes: a proposal for risk stratification and management. International Journal of Cardiology, 223, 590–595.

    Article  PubMed  Google Scholar 

  48. Ascenzi, F. D., Pelliccia, A., Maria, B., Bonifazi, M., & Mondillo, S. (2015). Exercise-induced left-ventricular hypertrabeculation in athlete’s heart. International Journal of Cardiology, 181, 320–2.49.

    Article  PubMed  Google Scholar 

  49. Lima, J. A, C., Bluemke, D. A., Petersen, S.E., Hil, D.P.. (2014). The relationship of left ventricular function and structure over a 9.5-year follow up. JACC. 64(19).

  50. Cavin I, Littleford R, Macfarlane, J. A, Matthew, S. Z., Nicholas, R.S., Struthers, A.D., et al. (2016) Left ventricular noncompaction. JACC, 68(20).

  51. Study APM. (2016) Long-term prognostic value of cardiac magnetic resonance in left ventricle noncompaction. JACC, 68(20).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Abulí.

Additional information

Associate Editor Domingo A. Pascual-Figal oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abulí, M., de la Garza, M.S. & Sitges, M. Differentiating Athlete’s Heart from Left Ventricle Cardiomyopathies. J. of Cardiovasc. Trans. Res. 13, 265–273 (2020). https://doi.org/10.1007/s12265-020-10021-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-020-10021-8

Keywords

Navigation