Skip to main content
Log in

Neuropsychopharmacological understanding for therapeutic application of morphinans

  • Review
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Morphinans are a class of compounds containing the basic structure of morphine. It is well-known that morphinans possess diverse pharmacological effects on the central nervous system. This review will demonstrate novel neuroprotective effects of several morphinans such as, dextromethorphan, its analogs and naloxone on the models of multiple neurodegenerative disease by modulating glial activation associated with the production of a host of proinflammatory and neurotoxic factors, although dextromethorphan possesses neuropsycotoxic potentials. The neuroprotective effects and the therapeutic potential for the treatment of excitotoxic and inflammatory neurodegenerative diseases, and underlying mechanism of morphinans are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aram, J. A., Martin, D., Tomczyk, M., Zeman, S., Millar, J., Pohler, G., and Lodge, D., Neocortical epileptogenesis in vitro: studies with N-methyl-D-aspartate, phencyclidine, sigma and dextromethorphan receptor ligands. J. Pharmacol. Exp. Ther., 248, 320–328 (1989).

    CAS  PubMed  Google Scholar 

  • Bem, J. L. and Peck, R., Dextromethorphan. An overview of safety issues. Drug Saf., 7, 190–199 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Bokesch, P. M., Marchand, J. E., Connelly, C. S., Wurm, W. H., and Kream, R. M., Dextromethorphan inhibits ischemiainduced c-fos expression and delayed neuronal death in hippocampal neurons. Anesthesiology, 81, 470–477 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Britton, P., Lu, X. C., Laskosky, M. S., and Tortella, F. C., Dextromethorphan protects against cerebral injury following transient, but not permanent, focal ischemia in rats. Life Sci., 60, 1729–1740 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Carliss, R. D., Radovsky, A., Chengelis, C. P., O’neill, T. P., and Shuey, D. L., Oral administration of dextromethorphan does not produce neuronal vacuolation in the rat brain. Neurotoxicology, 28, 813–818 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Chang, R. C., Rota, C., Glover, R. E., Mason, R. P., and Hong, J. S., A novel effect of an opioid receptor antagonist, naloxone, on the production of reactive oxygen species by microglia: a study by electron paramagnetic resonance spectroscopy. Brain Res., 854, 224–229 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Chapman, A. G. and Meldrum, B. S., Non-competitive Nmethyl-D-aspartate antagonists protect against soundinduced seizures in DBA/2 mice. Eur. J. Pharmacol., 166, 201–211 (1989).

    Article  CAS  PubMed  Google Scholar 

  • Chatterjie, N., Alexander, G. J., Sechzer, J. A., and Lieberman, K. W., Prevention of cocaine-induced hyperactivity by a naloxone isomer with no opiate antagonist activity. Neurochem. Res., 21, 691–693 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Chen, C. J., Liao, S. L., Chen, W. Y., Hong, J. S., and Kuo, J. S., Cerebral ischemia/reperfusion injury in rat brain: effects of naloxone. Neuroreport, 12, 1245–1249 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Chen, C. S., Gates, G. R., and Reynoldson, J. A., Effect of morphine and naloxone on priming-induced audiogenic seizures in BALB/c mice. Br. J. Pharmacol., 58, 517–520 (1976).

    CAS  PubMed  Google Scholar 

  • Chien, G. L. and Van Winkle, D. M., Naloxone blockade of myocardial ischemic preconditioning is stereoselective. J. Mol. Cell. Cardiol., 28, 1895–1900 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Choi, D. W., Dextrorphan and dextromethorphan attenuate glutamate neurotoxicity. Brain Res., 403, 333–336 (1987).

    Article  CAS  PubMed  Google Scholar 

  • Chung, H., Park, M., Hahn, E., Choi, H., and Lim, M., Recent trends of drug abuse and drug-associated deaths in Korea. Ann. N.Y. Acad. Sci., 1025, 458–464 (2004).

    Article  PubMed  Google Scholar 

  • Cole, A. E., Eccles, C. U., Aryanpur, J. J., and Fisher, R. S., Selective depression of N-methyl-D-aspartate-mediated responses by dextrorphan in the hippocampal slice in rat. Neuropharmacology, 28, 249–254 (1989).

    Article  CAS  PubMed  Google Scholar 

  • Cranston, J. W. and Yoast, R., Abuse of dextromethorphan. Arch. Fam. Med., 8, 99–100 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Craviso, G. L. and Musacchio, J. M., High-affinity dextromethorphan binding sites in guinea pig brain. II. Competition experiments. Mol. Pharmacol., 23, 629–640 (1983).

    CAS  PubMed  Google Scholar 

  • Desai, S., Aldea, D., Daneels, E., Soliman, M., Braksmajer, A. S., and Kopes-Kerr, C. P., Chronic addiction to dextromethorphan cough syrup: a case report. J. Am. Board Fam. Med., 19, 320–323 (2006).

    Article  PubMed  Google Scholar 

  • Donato, R., Intracellular and extracellular roles of S100 proteins. Microsc. Res. Tech., 60, 540–551 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Dziki, M., Honack, D., and Loscher, W., Kindled rats are more sensitive than non-kindled rats to the behavioural effects of combined treatment with MK-801 and valproate. Eur. J. Pharmacol., 222, 273–278 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Echevarria, E., Robles, L., and Tortella, F. C., Differential profiles of putative dextromrthorphan sigma ligands in experimental seizure models. FASEB J., 4, A331 (1990).

    Google Scholar 

  • Feeser, H. R., Kadis, J. L., and Prince, D. A., Dextromethorphan, a common antitussive, reduces kindled amygdala seizures in the rat. Neurosci. Lett., 86, 340–345 (1988).

    Article  CAS  PubMed  Google Scholar 

  • Ferkany, J. W., Borosky, S. A., Clissold, D. B., and Pontecorvo, M. J., Dextromethorphan inhibits NMDA-induced convulsions. Eur. J. Pharmacol., 151, 151–154 (1988).

    Article  CAS  PubMed  Google Scholar 

  • Franklin, P. H. and Murray, T. F., Identification and initial characterization of high-affinity [3H]dextrorphan binding sites in rat brain. Eur. J. Pharmacol., 189, 89–93 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Gao, H. M., Jiang, J., Wilson, B., Zhang, W., Hong, J. S., and Liu, B., Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson’s disease. J. Neurochem., 81, 1285–1297 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Gao, H. M., Liu, B., Zhang, W., and Hong, J. S., Critical role of microglial NADPH oxidase-derived free radicals in the in vitro MPTP model of Parkinson’s disease. FASEB J., 17, 1954–1956 (2003).

    CAS  PubMed  Google Scholar 

  • George, C. P., Goldberg, M. P., Choi, D. W., and Steinberg, G. K., Dextromethorphan reduces neocortical ischemic neuronal damage in vivo. Brain Res., 440, 375–379 (1988).

    Article  CAS  PubMed  Google Scholar 

  • Glick, S. D., Maisonneuve, I. M., Dickinson, H. A., and Kitchen, B. A., Comparative effects of dextromethorphan and dextrorphan on morphine, methamphetamine, and nicotine self-administration in rats. Eur. J. Pharmacol., 422, 87–90 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto, K., Tomitaka, S.-I., Narita, N., Minabe, Y., Iyo, M., and Fukui, S., Induction of heat shock protein HSP-70 in rat retrosplenial cortex following administration of dextromethorphan. Environ. Toxicol. Pharmacol., 1, 235–239 (1996).

    Article  Google Scholar 

  • Herling, S., Solomon, R. E., and Woods, J. H., Discriminative stimulus effects of dextrorphan in pigeons. J. Pharmacol. Exp. Ther., 227, 723–731 (1983).

    CAS  PubMed  Google Scholar 

  • Holtzman, S. G., Phencyclidine-like discriminative effects of opioids in the rat. J. Pharmacol. Exp. Ther., 214, 614–619 (1980).

    CAS  PubMed  Google Scholar 

  • Holtzman, S. G., Discriminative stimulus effects of dextromethorphan in the rat. Psychopharmacology (Berl.), 116, 249–254 (1994).

    Article  CAS  Google Scholar 

  • Iijima, I., Minamikawa, J., Jacobson, A. E., Brossi, A., and Rice, K. C., Studies in the (+)-morphinan series. 5. Synthesis and biological properties of (+)-naloxone. J. Med. Chem., 21, 398–400 (1978).

    Article  CAS  PubMed  Google Scholar 

  • Jhoo, W. K., Shin, E. J., Lee, Y. H., Cheon, M. A., Oh, K. W., Kang, S. Y., Lee, C., Yi, B. C., and Kim, H. C., Dual effects of dextromethorphan on cocaine-induced conditioned place preference in mice. Neurosci. Lett., 288, 76–80 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Khurgel, M., Switzer, R. C., 3rd, Teskey, G. C., Spiller, A. E., Racine, R. J., and Ivy, G. O., Activation of astrocytes during epileptogenesis in the absence of neuronal degeneration. Neurobiol. Dis., 2, 23–35 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Kim, H. C. and Jhoo, W. K., Alterations in motor activity induced by high dose oral administration of dextromethorphan throughout two consecutive generations in mice. Arch. Pharm. Res., 18, 146–152 (1995).

    Article  CAS  Google Scholar 

  • Kim, H. C., Jhoo, W. K., Kwan, M. S., and Hong, J. S., Effects of chronic dextromethorphan administration on the cellular immune responses in mice. Arch. Pharm. Res., 18, 267–270 (1995).

    Article  CAS  Google Scholar 

  • Kim, H. C., Pennypacker, K. R., Bing, G., Bronstein, D., Mcmillian, M. K., and Hong, J. S., The effects of dextromethorphan on kainic acid-induced seizures in the rat. Neurotoxicology, 17, 375–385 (1996).

    CAS  PubMed  Google Scholar 

  • Kim, H. C., Park, B. K., Hong, S. Y., and Jhoo, W. K., Dextromethorphan alters the reinforcing effect of cocaine in the rat. Methods Find. Exp. Clin. Pharmacol., 19, 627–631 (1997a).

    CAS  PubMed  Google Scholar 

  • Kim, H. C., Suh, H. W., Bronstein, D., Bing, G., Wilson, B., and Hong, J. S., Dextromethorphan blocks opioid peptide gene expression in the rat hippocampus induced by kainic acid. Neuropeptides, 31, 105–112 (1997b).

    Article  CAS  PubMed  Google Scholar 

  • Kim, H. C., Bing, G., Jhoo, W. K., Ko, K. H., Kim, W. K., Lee, D. C., Shin, E. J., and Hong, J. S., Dextromethorphan modulates the AP-1 DNA-binding activity induced by kainic acid. Brain Res., 824, 125–132 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Kim, H. C., Bing, G., Shin, E. J., Jhoo, H. S., Cheon, M. A., Lee, S. H., Choi, K. H., Kim, J. I., and Jhoo, W. K., Dextromethorphan affects cocaine-mediated behavioral pattern in parallel with a long-lasting Fos-related antigen-immunoreactivity. Life Sci., 69, 615–624 (2001a).

    Article  CAS  PubMed  Google Scholar 

  • Kim, H. C., Ko, K. H., Kim, W. K., Shin, E. J., Kang, K. S., Shin, C. Y., and Jhoo, W. K., Effects of dextromethorphan on the seizures induced by kainate and the calcium channel agonist BAY k-8644: comparison with the effects of dextrorphan. Behav. Brain Res., 120, 169–175 (2001b).

    Article  CAS  PubMed  Google Scholar 

  • Kim, H. C., Nabeshima, T., Jhoo, W. K., Ko, K. H., Kim, W. K., Shin, E. J., Cho, M., and Lee, P. H., Anticonvulsant effects of new morphinan derivatives. Bioorg. Med. Chem. Lett., 11, 1651–1654 (2001c).

    Article  CAS  PubMed  Google Scholar 

  • Kim, H. C., Bing, G., Jhoo, W. K., Kim, W. K., Shin, E. J., Im, D. H., Kang, K. S., and Ko, K. H., Metabolism to dextrorphan is not essential for dextromethorphan’s anticonvulsant activity against kainate in mice. Life Sci., 72, 769–783 (2003a).

    Article  CAS  PubMed  Google Scholar 

  • Kim, H. C., Shin, C. Y., Seo, D. O., Jhoo, J. H., Jhoo, W. K., Kim, W. K., Shin, E. J., Lee, Y. H., Lee, P. H., and Ko, K. H., New morphinan derivatives with negligible psychotropic effects attenuate convulsions induced by maximal electroshock in mice. Life Sci., 72, 1883–1895 (2003b).

    Article  CAS  PubMed  Google Scholar 

  • Klette, K. L., Decoster, M. A., Moreton, J. E., and Tortella, F. C., Role of calcium in sigma-mediated neuroprotection in rat primary cortical neurons. Brain Res., 704, 31–41 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Knapp, P. E., Maderspach, K., and Hauser, K. F., Endogenous opioid system in developing normal and jimpy oligodendrocytes: mu and kappa opioid receptors mediate differential mitogenic and growth responses. Glia, 22, 189–201 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Knapp, R. J., Malatynska, E., Collins, N., Fang, L., Wang, J. Y., Hruby, V. J., Roeske, W. R., and Yamamura, H. I., Molecular biology and pharmacology of cloned opioid receptors. FASEB J., 9, 516–525 (1995).

    CAS  PubMed  Google Scholar 

  • Le Gal La Salle, G., Calvino, B., and Ben-Ari, Y., Morphine enhances amygdaloid seizures and increases inter-ictal spike frequency in kindled rats. Neurosci. Lett., 6, 255–260 (1977).

    Article  PubMed  Google Scholar 

  • Leander, J. D., Evaluation of dextromethorphan and carbetapentane as anticonvulsants and N-methyl-D-aspartic acid antagonists in mice. Epilepsy Res., 4, 28–33 (1989).

    Article  CAS  PubMed  Google Scholar 

  • Liu, B., Du, L., and Hong, J. S., Naloxone protects rat dopaminergic neurons against inflammatory damage through inhibition of microglia activation and superoxide generation. J. Pharmacol. Exp. Ther., 293, 607–617 (2000a).

    CAS  PubMed  Google Scholar 

  • Liu, B., Jiang, J. W., Wilson, B. C., Du, L., Yang, S. N., Wang, J. Y., Wu, G. C., Cao, X. D., and Hong, J. S., Systemic infusion of naloxone reduces degeneration of rat substantia nigral dopaminergic neurons induced by intranigral injection of lipopolysaccharide. J. Pharmacol. Exp. Ther., 295, 125–132 (2000b).

    CAS  PubMed  Google Scholar 

  • Liu, Y., Qin, L., Wilson, B. C., An, L., Hong, J. S., and Liu, B., Inhibition by naloxone stereoisomers of beta-amyloid peptide (1–42)-induced superoxide production in microglia and degeneration of cortical and mesencephalic neurons. J. Pharmacol. Exp. Ther., 302, 1212–1219 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Loscher, W. and Honack, D., Responses to NMDA receptor antagonists altered by epileptogenesis. Trends Pharmacol. Sci., 12, 52 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Luhmann, H. J. and Scheid, M., Dextromethorphan attenuates hypoxia-induced neuronal dysfunction in rat neocortical slices. Neurosci. Lett., 178, 171–174 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Mendelsohn, L. G., Kerchner, G. A., Kalra, V., Zimmerman, D. M., and Leander, J. D., Phencyclidine receptors in rat brain cortex. Biochem. Pharmacol., 33, 3529–3535 (1984).

    Article  CAS  PubMed  Google Scholar 

  • Monyer, H. and Choi, D. W., Morphinans attenuate cortical neuronal injury induced by glucose deprivation in vitro. Brain Res., 446, 144–148 (1988).

    Article  CAS  PubMed  Google Scholar 

  • Murray, T. F. and Leid, M. E., Interaction of dextrorotatory opioids with phencyclidine recognition sites in rat brain membranes. Life Sci., 34, 1899–1911 (1984).

    Article  CAS  PubMed  Google Scholar 

  • Netzer, R., Pflimlin, P., and Trube, G., Dextromethorphan blocks N-methyl-D-aspartate-induced currents and voltageoperated inward currents in cultured cortical neurons. Eur. J. Pharmacol., 238, 209–216 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Newman, A. H., Bevan, K., Bowery, N., and Tortella, F. C., Synthesis and evaluation of 3-substituted 17-methylmor phinan analogs as potential anticonvulsant agents. J. Med. Chem., 35, 4135–4142 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Olney, J. W., Labruyere, J., and Price, M. T., Pathological changes induced in cerebrocortical neurons by phencyclidine and related drugs. Science, 244, 1360–1362 (1989).

    Article  CAS  PubMed  Google Scholar 

  • Oprica, M., Eriksson, C., and Schultzberg, M., Inflammatory mechanisms associated with brain damage induced by kainic acid with special reference to the interleukin-1 system. J. Cell. Mol. Med., 7, 127–140 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Pulvirenti, L., Balducci, C., and Koob, G. F., Dextromethorphan reduces intravenous cocaine self-administration in the rat. Eur. J. Pharmacol., 321, 279–283 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Qin, L., Block, M. L., Liu, Y., Bienstock, R. J., Pei, Z., Zhang, W., Wu, X., Wilson, B., Burka, T., and Hong, J. S., Microglial NADPH oxidase is a novel target for femtomolar neuroprotection against oxidative stress. FASEB J., 19, 550–557 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Quirion, R., Bowen, W. D., Itzhak, Y., Junien, J. L., Musacchio, J. M., Rothman, R. B., Su, T. P., Tam, S. W., and Taylor, D. P., A proposal for the classification of sigma binding sites. Trends Pharmacol. Sci., 13, 85–86 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Ravizza, T., Rizzi, M., Perego, C., Richichi, C., Veliskova, J., Moshe, S. L., De Simoni, M. G., and Vezzani, A., Inflammatory response and glia activation in developing rat hippocampus after status epilepticus. Epilepsia, 46Suppl 5, 113–117 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Rizzi, M., Perego, C., Aliprandi, M., Richichi, C., Ravizza, T., Colella, D., Veliskova, J., Moshe, S. L., De Simoni, M. G., and Vezzani, A., Glia activation and cytokine increase in rat hippocampus by kainic acid-induced status epilepticus during postnatal development. Neurobiol. Dis., 14, 494–503 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Rogawski, M. A. and Porter, R. J., Antiepileptic drugs: pharmacological mechanisms and clinical efficacy with consideration of promising developmental stage compounds. Pharmacol. Rev., 42, 223–286 (1990).

    CAS  PubMed  Google Scholar 

  • Roy, S. and Loh, H. H., Effects of opioids on the immune system. Neurochem. Res., 21, 1375–1386 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Satoh, M. and Minami, M., Molecular pharmacology of the opioid receptors. Pharmacol. Ther., 68, 343–364 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Sharp, F. R., Butaman, M., Aardalen, K., Nickolenko, J., Nakki, R., Massa, S. M., Swanson, R. A., and Sagar, S. M., Neuronal injury produced by NMDA antagonists can be detected using heat shock proteins and can be blocked with antipsychotics. Psychopharmacol. Bull., 30, 555–560 (1994).

    CAS  PubMed  Google Scholar 

  • Shin, E. J., Nabeshima, T., Lee, P. H., Kim, W. K., Ko, K. H., Jhoo, J. H., Jhoo, W. K., Cha, J. Y., and Kim, H. C., Dimemorfan prevents seizures induced by the L-type calcium channel activator BAY k-8644 in mice. Behav. Brain Res., 151, 267–276 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Shin, E. J., Nah, S. Y., Kim, W. K., Ko, K. H., Jhoo, W. K., Lim, Y. K., Cha, J. Y., Chen, C. F., and Kim, H. C., The dextromethorphan analog dimemorfan attenuates kainateinduced seizures via sigma1 receptor activation: comparison with the effects of dextromethorphan. Br. J. Pharmacol., 144, 908–918 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Shin, E. J., Nah, S. Y., Chae, J. S., Bing, G., Shin, S. W., Yen, T. P., Baek, I. H., Kim, W. K., Maurice, T., Nabeshima, T., and Kim, H. C., Dextromethorphan attenuates trimethyltin-induced neurotoxicity via sigma1 receptor activation in rats. Neurochem. Int., 50, 791–799 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Shin, E. J., Lee, P. H., Kim, H. J., Nabeshima, T., and Kim, H. C., Neuropsychotoxicity of abused drugs: potential of dextromethorphan and novel neuroprotective analogs of dextromethorphan with improved safety profiles in terms of abuse and neuroprotective effects. J. Pharmacol. Sci., 106, 22–27 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Snyder, E. W., Shearer, D. E., Beck, E. C., and Dustmann, R. E., Naloxone-induced electrographic seizures in the primate. Psychopharmacology (Berl.), 67, 211–214 (1980).

    Article  CAS  Google Scholar 

  • Somera-Molina, K. C., Robin, B., Somera, C. A., Anderson, C., Stine, C., Koh, S., Behanna, H. A., Van Eldik, L. J., Watterson, D. M., and Wainwright, M. S., Glial activation links early-life seizures and long-term neurologic dysfunction: evidence using a small molecule inhibitor of proinflammatory cytokine upregulation. Epilepsia, 48, 1785–1800 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Steinberg, G. K., Lo, E. H., Kunis, D. M., Grant, G. A., Poljak, A., and Delapaz, R., Dextromethorphan alters cerebral blood flow and protects against cerebral injury following focal ischemia. Neurosci. Lett., 133, 225–228 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Steinmiller, C. L., Maisonneuve, I. M., and Glick, S. D., Effects of dextromethorphan on dopamine release in the nucleus accumbens: Interactions with morphine. Pharmacol. Biochem. Behav., 74, 803–810 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Takazawa, A., Anderson, P., and Abraham, W. C., Effects of dextromethorphan, a nonopioid antitussive, on development and expression of amygdaloid kindled seizures. Epilepsia, 31, 496–502 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Tortella, F. C. and Musacchio, J. M., Dextromethorphan and carbetapentane: centrally acting non-opioid antitussive agents with novel anticonvulsant properties. Brain Res., 383, 314–318 (1986).

    Article  CAS  PubMed  Google Scholar 

  • Tortella, F. C., Martin, D. A., Allot, C. P., Steel, J. A., Blackburn, T. P., Loveday, B. E., and Russell, N. J., Dextromethorphan attenuates post-ischemic hypoperfusion following incomplete global ischemia in the anesthetized rat. Brain Res., 482, 179–183 (1989a).

    Article  CAS  PubMed  Google Scholar 

  • Tortella, F. C., Pellicano, M., and Bowery, N. G., Dextromethorphan and neuromodulation: old drug coughs up new activities. Trends Pharmacol. Sci., 10, 501–507 (1989b).

    Article  CAS  PubMed  Google Scholar 

  • Tortella, F. C., Robles, L., Witkin, J. M., and Newman, A. H., Novel anticonvulsant analogs of dextromethorphan: Improved efficacy, potency, duration and side-effect profile. J. Pharmacol. Exp. Ther., 268, 727–733 (1994).

    CAS  PubMed  Google Scholar 

  • Tortella, F. C., Britton, P., Williams, A., Lu, X. C., and Newman, A. H., Neuroprotection (focal ischemia) and neurotoxicity (electroencephalographic) studies in rats with AHN649, a 3-amino analog of dextromethorphan and low-affinity N-methyl-D-aspartate antagonist. J. Pharmacol. Exp. Ther., 291, 399–408 (1999).

    CAS  PubMed  Google Scholar 

  • Trube, G. and Netzer, R., Dextromethorphan: cellular effects reducing neuronal hyperactivity. Epilepsia, 35Suppl 5, S62–S67 (1994).

    Article  PubMed  Google Scholar 

  • Turski, L., Ikonomidou, C., Cavalheiro, E. A., Kleinrok, Z., Czuczwar, S. J., and Turski, W. A., Effects of morphine and naloxone on pilocarpine-induced convulsions in rats. Neuropeptides, 5, 315–318 (1985).

    Article  CAS  PubMed  Google Scholar 

  • Vaglini, F., Pardini, C., Bonuccelli, U., Maggio, R., and Corsini, G. U., Dextromethorphan prevents the diethyldithiocarbamate enhancement of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity in mice. Brain Res., 973, 298–302 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Vezzani, A. and Granata, T., Brain inflammation in epilepsy: experimental and clinical evidence. Epilepsia, 46, 1724–1743 (2005)

    Article  CAS  PubMed  Google Scholar 

  • Viviani, B., Bartesaghi, S., Gardoni, F., Vezzani, A., Behrens, M. M., Bartfai, T., Binaglia, M., Corsini, E., Di Luca, M., Galli, C. L., and Marinovich, M., Interleukin-1beta enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases. J. Neurosci., 23, 8692–8700 (2003).

    CAS  PubMed  Google Scholar 

  • Wainwright, M. S., Craft, J. M., Griffin, W. S., Marks, A., Pineda, J., Padgett, K. R., and Van Eldik, L. J., Increased susceptibility of S100B transgenic mice to perinatal hypoxia-ischemia. Ann. Neurol., 56, 61–67 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Wolfe, T. R. and Caravati, E. M., Massive dextromethorphan ingestion and abuse. Am. J. Emerg. Med., 13, 174–176 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Wu, D., Otton, S. V., Kalow, W., and Sellers, E. M., Effects of route of administration on dextromethorphan pharmacokinetics and behavioral response in the rat. J. Pharmacol. Exp. Ther., 274, 1431–1437 (1995).

    CAS  PubMed  Google Scholar 

  • Yang, P. P., Huang, E. Y., Yeh, G. C., and Tao, P. L., Coadministration of dextromethorphan with methamphetamine attenuates methamphetamine-induced rewarding and behavioral sensitization. J. Biomed. Sci., 13, 695–702 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Zapata, A., Gasior, M., Geter-Douglass, B., Tortella, F. C., Newman, A. H., and Witkin, J. M., Attenuation of the stimulant and convulsant effects of cocaine by 17-substituted-3-hydroxy and 3-alkoxy derivatives of dextromethorphan. Pharmacol. Biochem. Behav., 74, 313–323 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, W., Wang, T., Qin, L., Gao, H. M., Wilson, B., Ali, S. F., Hong, J. S., and Liu, B., Neuroprotective effect of dextromethorphan in the MPTP Parkinson’s disease model: role of NADPH oxidase. FASEB J., 18, 589–591 (2004).

    CAS  PubMed  Google Scholar 

  • Zhang, W., Qin, L., Wang, T., Wei, S. J., Gao, H. M., Liu, J., Wilson, B., Liu, B., Kim, H. C., and Hong, J. S., 3-hydroxymorphinan is neurotrophic to dopaminergic neurons and is also neuroprotective against LPS-induced neurotoxicity. FASEB J., 19, 395–397 (2005).

    CAS  PubMed  Google Scholar 

  • Zhang, W., Shin, E. J., Wang, T., Lee, P. H., Pang, H., Wie, M. B., Kim, W. K., Kim, S. J., Huang, W. H., Wang, Y., Hong, J. S., and Kim, H. C., 3-Hydroxymorphinan, a metabolite of dextromethorphan, protects nigrostriatal pathway against MPTP-elicited damage both in vivo and in vitro. FASEB J., 20, 2496–2511 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Zhou, G. Z. and Musacchio, J. M., Computer-assisted modeling of multiple dextromethorphan and sigma binding sites in guinea pig brain. Eur. J. Pharmacol., 206, 261–269 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyoung-Chun Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, EJ., Hong, JS. & Kim, HC. Neuropsychopharmacological understanding for therapeutic application of morphinans. Arch. Pharm. Res. 33, 1575–1587 (2010). https://doi.org/10.1007/s12272-010-1009-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-010-1009-4

Key words

Navigation