Skip to main content
Log in

Preliminary in vitro and ex vivo evaluation of afzelin, kaempferitrin and pterogynoside action over free radicals and reactive oxygen species

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Biological activities of flavonoids have been extensively reviewed in literature. The biochemical profile of afzelin, kaempferitrin, and pterogynoside acting on reactive oxygen species was investigated in this paper. The flavonoids were able to act as scavengers of the superoxide anion, hypochlorous acid and taurine chloramine. Although flavonoids are naturally occurring substances in plants which antioxidant activities have been widely advertised as beneficial, afzelin, kaempferitrin, and pterogynoside were able to promote cytotoxic effect. In red blood cells this toxicity was enhanced, depending on flavonoids concentration, in the presence of hypochlorous acid, but reduced in the presence of 2,2′-azo-bis(2-amidinopropane) free radical. These flavonoids had also promoted the death of neutrophils, which was exacerbated when the oxidative burst was initiated by phorbol miristate acetate. Therefore, despite their well-known scavenging action toward free radicals and oxidants, these compounds could be very harmful to living organisms through their action over erythrocytes and neutrophils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Babior, B.M. 2000. Phagocytes and oxidative stress. American Journal of Medicine 109(1): 33–44.

    Article  CAS  PubMed  Google Scholar 

  • Banerjee, A., A. Kunwar, B. Mishra, and K.I. Priyadarsini. 2008. Concentration dependent antioxidant/pro-oxidant activity of curcumin studies from AAPH induced hemolysis of RBCs. Chemico-Biological Interactions 174(2): 134–139.

    Article  CAS  PubMed  Google Scholar 

  • Ben Sghaier, M., I. Skandrani, N. Nasr, M.G. Franca, L. Chekir-Ghedira, and K. Ghedira. 2011. Flavonoids and sesquiterpenes from Tecurium ramosissimum promote antiproliferation of human cancer cells and enhance antioxidant activity: A structure-activity relationship study. Environmental Toxicology and Pharmacology 32(3): 336–348.

    Article  CAS  PubMed  Google Scholar 

  • Benedí, J., R. Arroyo, C. Romero, S. Martín-Aragón, and A.M. Villar. 2004. Antioxidant properties and protective effects of a standardized extract of Hypericum perforatum on hydrogen peroxide-induced oxidative damage in PC12 cells. Life Scences 75(10): 1263–1276.

    Article  Google Scholar 

  • Buonocore, G., S. Perrone, and M.L. Tataranno. 2010. Oxygen toxicity: Chemistry and biology of reactive oxygen species. Seminars in Fetal and Neonatal Medicine 15(4): 186–190.

    Article  PubMed  Google Scholar 

  • Carvalho, P.R., D.H. Silva, V.S. Bolzani, and M. Furlan. 2005. Antioxidant quinonemethide triterpenes from Salacia campestris. Chemistry & Biodiversity 2(3): 367–372.

    Article  CAS  Google Scholar 

  • Castor, L.R., K.A. Locatelli, and V.F. Ximenes. 2010. Pro-oxidant activity of apocynin radical. Free Radical Biology and Medicine 48(12): 1636–1643.

    Article  CAS  PubMed  Google Scholar 

  • Chan, T., G. Galati, and P.J. O’Brien. 1999. Oxygen activation during peroxidase catalysed metabolism of flavones or flavanones. Chemical-Biological Interactions 122(1): 15–25.

    Article  CAS  Google Scholar 

  • Cui, Y., D.S. Kim, and K.C. Park. 2005. Antioxidant effect of Inonotus obliquus. Journal of Ethnopharmacology 96(1–2): 79–85.

    Article  PubMed  Google Scholar 

  • da Costa, M., V.F. Ximenes, and L.M. da Fonseca. 2004. Hypochlorous acid inhibition by acetoacetate: implications on neutrophil functions. Biological and Pharmaceutical Bulletin 27(8): 1183–1187.

    Article  PubMed  Google Scholar 

  • Eaton, J.W. 1993. Defenses against hypochlorous acid: parrying the neutrophil's rapier thrust. Journal of Laboratory and Clinical Medicine 121(2): 197–208.

  • Galati, G., T. Chan, B. Wu, and P.J. O’Brien. 1999. Glutathione-dependent generation of reactive oxygen species by the peroxidase-catalyzed redox cycling of flavonoids. Chemical Research in Toxicology 12(6): 521–525.

    Article  CAS  PubMed  Google Scholar 

  • Galati, G., M.Y. Moridani, T.S. Chan, and P.J. O’Brien. 2001. Peroxidative metabolism of apigenin and naringenin versus luteolin and quercetin: glutathione oxidation and conjugation. Free Radical Biology and Medicine 30(4): 370–382.

    Article  CAS  PubMed  Google Scholar 

  • Halliwell, B., M. Wasil, and M. Grootveld. 1987. Biologically significant scavenging of the myeloperoxidase-derived oxidant hypochlorous acid by ascorbic acid. Implications for antioxidant protection in the inflamed rheumatoid joint. FEBS Letters 213(1): 15–17.

    Article  CAS  PubMed  Google Scholar 

  • Hubinger, S.Z., L.C. Cefali, J.C.R. Vellosa, H.R.N. Salgado, V.L.B. Isaac, and R.R.D. Moreira. 2010. Dimorphandra mollis: Uma alternativa como fonte de flavonóides de ação antioxidante. Latin American Journal of Pharmacy 29(2): 161–320.

    Google Scholar 

  • Kakkar, P., B. Das, and P.N. Viswanathan. 1984. A modified spectrophotometric assay of superoxide dismutase. Indian Journal of Biochemestry and Biophysics 21(2): 130–132.

    CAS  Google Scholar 

  • Lapenna, D., and F. Cuccurullo. 1996. Hypochlorous acid and its pharmacological antagonism: an update picture. General Pharmacology 27(7): 1145–1147.

    Article  CAS  PubMed  Google Scholar 

  • MacMicking, J., Q.W. Xie, and C. Nathan. 1997. Nitric oxide and macrophage function. Annual Review Immunology 15: 323–350.

    Article  CAS  Google Scholar 

  • Metodiewa, D., A. Kochman, and S. Karolczak. 1997. Evidence for antiradical and antioxidant properties of four biologically active N, N-diethylaminoethyl ethers of flavanone oximes: a comparison with natural polyphenolic flavonoid (rutin) action. Biochemestry and Molecular Biology International 41(5): 1067–1075.

    CAS  Google Scholar 

  • Mian, M.F., C. Kang, S. Lee, J.H. Choi, S.S. Bae, S.H. Kim, Y.H. Kim, et al. 2008. Cleavage of focal adhesion kinase is an early marker and modulator of oxidative stress-induced apoptosis. Chemico-Biologycal Interactions 171(1): 57–66.

    Article  CAS  Google Scholar 

  • Pereira, A.M.S., A.H. Januário, M.E.E. Queiroz, R. Biondo, and S.C. França. 2005. Evaluation of Maytenus aquifolia Mart. and Maytenus ilicifolia Mart. chemotypes fortannins, total phenols and triterpenes. Revista Brasileira de Plantas Medicinais 8(1): 13–17.

    CAS  Google Scholar 

  • Regasini, L.O., J.C. Vellosa, D.H. Silva, M. Furlan, O.M. de Oliveira, N.M. Khalil, I.L. Brunetti, M.C. Young, E.J. Barreiro, and V.S. Bolzani. 2008. Flavonols from Pterogyne nitens and their evaluation as myeloperoxidase inhibitors. Phytochemistry 69(8): 1739–1744.

    Article  CAS  PubMed  Google Scholar 

  • Scott, M.D., J.J. van den Berg, T. Repka, P. Rouyer-Fessard, R.P. Hebbel, Y. Beuzard, and B.H. Lubin. 1993. Effect of excess alpha-hemoglobin chains on cellular and membrane oxidation in model beta-thalassemic erythrocytes. Journal of Clinical Investigation 91(4): 1706–1712.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thomas, E.L., M.B. Grisham, and M.M. Jefferson. 1986. Preparation and characterization of chloramines. Methods in Enzymology 132: 569–585.

    CAS  PubMed  Google Scholar 

  • Vellosa, J.C.R., N.M. Khalil, V.O. Gutierres, V.A.F.F.M. dos Santos, M. Furlan, I.L. Brunetti, and O.M.M.F. Oliveira. 2007. Profile of Maytenus aquifolium action over free radicals and reactive oxygen species. Revista Brasileira de Ciências Farmacêuticas 43(3): 447–453.

    Article  CAS  Google Scholar 

  • Vellosa, J.C.R., N.M. Khalil, V.O. Gutierres, V.A.F.F.M. dos Santos, M. Furlan, I.L. Brunetti, and O.M.M.F. Oliveira. 2009. Salacia campestris root bark extract: Peroxidase inhibition, antioxidant and antiradical profile. Brazilian Journal of Pharmaceutical Sciences 45(1): 99–107.

    Article  CAS  Google Scholar 

  • Vellosa, J.C.R., L.O. Regasini, N.M. Khalil, V.S. Bolzani, O.A.K. Khalil, F.A. Manente, H.P. Netto, and O.M.M.F. Oliveira. 2011. Antioxidant and cytotoxic studies for kaempferol, quercetin and isoquercitrin. Eclética Química 36(2): 07–20.

    Article  Google Scholar 

  • Vissers, M.C., A.C. Carr, and A.L. Chapman. 1998. Comparison of human red cell lysis by hypochlorous and hypobromous acids: insights into the mechanism of lysis. Biochemical Journal 330(Pt 1): 131–138.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weiss, S.J. 1989. Tissue destruction by neutrophils. The New England Journal of Medicine 320(6): 365–376.

    Article  CAS  PubMed  Google Scholar 

  • Yang, H.L., S.C. Chen, N.W. Chang, J.M. Chang, M.L. Lee, P.C. Tsai, H.H. Fu, et al. 2006. Protection from oxidative damage using Bidens pilosa extracts in normal human erythrocytes. Food and Chemical Toxicology 44(9): 1513–1521.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, Q.Y., R.R. Holt, S.A. Lazarus, T.J. Orozco, and C.L. Keen. 2002. Inhibitory effects of cocoa flavanols and procyanidin oligomers on free radical-induced erythrocyte hemolysis. Experimental Biology and Medicine 227(5): 321–329.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to José Carlos Rebuglio Vellosa or Olga Maria Mascarenhas de Faria Oliveira.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 105 kb)

Supplementary material 2 (PDF 141 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vellosa, J.C.R., Regasini, L.O., Belló, C. et al. Preliminary in vitro and ex vivo evaluation of afzelin, kaempferitrin and pterogynoside action over free radicals and reactive oxygen species. Arch. Pharm. Res. 38, 1168–1177 (2015). https://doi.org/10.1007/s12272-014-0487-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-014-0487-1

Keywords

Navigation