Skip to main content
Log in

Size-dependent gene delivery of amine-modified silica nanoparticles

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Silica-based nanoparticles are promising carriers for gene delivery applications. To gain insights into the effect of particle size on gene transfection efficiency, amine-modified monodisperse Stöber spheres (NH2-SS) with diameters of 125, 230, 330, 440, and 570 nm were synthesized. The in vitro transfection efficiencies of NH2-SS for delivering plasmid DNA encoding green fluorescent protein (GFP) (pcDNA3-EGFP, abbreviated as pcDNA, 6.1 kbp) were studied in HEK293T cells. NH2-SS with a diameter of 330 nm (NH2-SS330) showed the highest GFP transfection level compared to NH2-SS particles with other sizes. The transfection efficiency was found as a compromise between the binding capacity and cellular uptake performance of NH2-SS330 and pcDNA conjugates. NH2-SS330 also demonstrated the highest transfection efficiency for plasmid DNA (pDNA) with a bigger size of 8.9 kbp. To our knowledge, this study is the first to demonstrate the significance of particle size for gene transfection efficiency in silica-based gene delivery systems. Our findings are crucial to the rational design of synthetic vectors for gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Roy, K.; Mao, H. Q.; Huang, S. K.; Leong, K. W. Oral gene delivery with chitosan-DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat. Med. 1999, 5, 387–391.

    Article  Google Scholar 

  2. Luo, D.; Saltzman, W. M. Synthetic DNA delivery systems. Nat. Biotechnol. 2000, 18, 33–37.

    Article  Google Scholar 

  3. Lew, D.; Parker, S. E.; Latimer, T.; Abai, A. M.; Kuwahararundell, A.; Doh, S. G.; Yang, Z. Y.; Laface, D.; Gromkowski, S. H.; Nabel, G. J. et al. Cancer gene therapy using plasmid DNA: Pharmacokinetic study of DNA following injection in mice. Hum. Gene Ther. 1995, 6, 553–564.

    Article  Google Scholar 

  4. Giacca, M.; Zacchigna, S. Virus-mediated gene delivery for human gene therapy. J. Control. Release 2012, 161, 377–388.

    Article  Google Scholar 

  5. Mintzer, M. A.; Simanek, E. E. Nonviral vectors for gene delivery. Chem. Rev. 2009, 109, 259–302.

    Article  Google Scholar 

  6. Crystal, R. G. Transfer of genes to humans: Early lessons and obstacles to success. Science 1995, 270, 404–410.

    Article  Google Scholar 

  7. Tripathy, S. K.; Black, H. B.; Goldwasser, E.; Leiden, J. M. Immune responses to transgene-encoded proteins limit the stability of gene expression after injection of replicationdefective adenovirus vectors. Nat. Med. 1996, 2, 545–550.

    Article  Google Scholar 

  8. Bessis, N.; GarciaCozar, F. J.; Boissier, M. C. Immune responses to gene therapy vectors: Influence on vector function and effector mechanisms. Gene Ther. 2004, 11, S10–S17.

    Article  Google Scholar 

  9. Boussif, O.; Lezoualch, F.; Zanta, M. A.; Mergny, M. D.; Scherman, D.; Demeneix, B.; Behr, J. P. A versatile vector for gene and oligonucleotide transfer into cells in culture and in-vivo: Polyethylenimine. Proc. Natl. Acad. Sci. USA 1995, 92, 7297–7301.

    Article  Google Scholar 

  10. Zhang, S. B.; Zhi, D. F.; Huang, L. Lipid-based vectors for sirna delivery. J. Drug Target. 2012, 20, 724–735.

    Article  Google Scholar 

  11. Hoyer, J.; Neundorf, I. Peptide vectors for the nonviral delivery of nucleic acids. Acc. Chem. Res. 2012, 45, 1048–1056.

    Article  Google Scholar 

  12. Sokolova, V.; Epple, M. Inorganic nanoparticles as carriers of nucleic acids into cells. Angew. Chem., Int. Ed. 2008, 47, 1382–1395.

    Article  Google Scholar 

  13. Niu, Y. T.; Popat, A.; Yu, M. H.; Karmakar, S.; Gu, W. Y.; Yu, C. Z. Recent advances in the rational design of silicabased nanoparticles for gene therapy. Ther. Deliv. 2012, 3, 1217–1237.

    Article  Google Scholar 

  14. Radu, D. R.; Lai, C. Y.; Jeftinija, K.; Rowe, E. W.; Jeftinija, S.; Lin, V. S. Y. A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent. J. Am. Chem. Soc. 2004, 126, 13216–13217.

    Google Scholar 

  15. Chen, A. M.; Zhang, M.; Wei, D. G.; Stueber, D.; Taratula, O.; Minko, T.; He, H. X. Co-delivery of doxorubicin and Bcl-2 sirna by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells. Small 2009, 5, 2673–2677.

    Article  Google Scholar 

  16. Kim, M. H.; Na, H. K.; Kim, Y. K.; Ryoo, S. R.; Cho, H. S.; Lee, K. E.; Jeon, H.; Ryoo, R.; Min, D. H. Facile synthesis of monodispersed mesoporous silica nanoparticles with ultralarge pores and their application in gene delivery. ACS Nano 2011, 5, 3568–3576.

    Article  Google Scholar 

  17. Kneuer, C.; Sameti, M.; Haltner, E. G.; Schiestel, T.; Schirra, H.; Schmidt, H.; Lehr, C. M. Silica nanoparticles modified with aminosilanes as carriers for plasmid DNA. Int. J. Pharm. 2000, 196, 257–261.

    Article  Google Scholar 

  18. Kneuer, C.; Sameti, M.; Bakowsky, U.; Schiestel, T.; Schirra, H.; Schmidt, H.; Lehr, C. M. A nonviral DNA delivery system based on surface modified silica-nanoparticles can efficiently transfect cells in vitro. Bioconjug. Chem. 2000, 11, 926–932.

    Google Scholar 

  19. Bharali, D. J.; Klejbor, I.; Stachowiak, E. K.; Dutta, P.; Roy, I.; Kaur, N.; Bergey, E. J.; Prasad, P. N.; Stachowiak, M. K. Organically modified silica nanoparticles: A nonviral vector for in vivo gene delivery and expression in the brain. Proc. Natl. Acad. Sci. USA 2005, 102, 11539–11544.

    Article  Google Scholar 

  20. Cebrián, V.; Yagüe, C.; Arruebo, M.; Martín-Saavedra, F. M.; Santamaría, J.; Vilaboa, N. On the role of the colloidal stability of mesoporous silica nanoparticles as gene delivery vectors. J. Nanopart. Res. 2011, 13, 4097–4108.

    Article  Google Scholar 

  21. Lin, X. Y.; Zhao, N. N.; Yan, P.; Hu, H.; Xu, F. J. The shape and size effects of polycation functionalized silica nanoparticles on gene transfection. Acta Biomater. 2015, 11, 381–392.

    Article  Google Scholar 

  22. Cebrián, V.; Martín-Saavedra, F.; Yagüe, C.; Arruebo, M.; Santamaría, J.; Vilaboa, N. Size-dependent transfection efficiency of pei-coated gold nanoparticles. Acta Biomater. 2011, 7, 3645–3655.

    Article  Google Scholar 

  23. Xu, D. M.; Yao, S. D.; Liu, Y. B.; Sheng, K. L.; Hong, J.; Gong, P. J.; Dong, L. Size-dependent properties of M-PEIs nanogels for gene delivery in cancer cells. Int. J. Pharm. 2007, 338, 291–296.

    Article  Google Scholar 

  24. Prabha, S.; Zhou, W. Z.; Panyam, J.; Labhasetwar, V. Size-dependency of nanoparticle-mediated gene transfection: Studies with fractionated nanoparticles. Int. J. Pharm. 2002, 244, 105–115.

    Article  Google Scholar 

  25. Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26, 62–69.

    Article  Google Scholar 

  26. Yamada, H.; Loretz, B.; Lehr, C. M. Design of starchgraft- PEI polymers: An effective and biodegradable gene delivery platform. Biomacromolecules 2014, 15, 1753–1761.

    Article  Google Scholar 

  27. Revet, B.; Fourcade, A. Short unligated sticky ends enable the observation of circularised DNA by atomic force and electron microscopies. Nucleic Acids Res. 1998, 26, 2092–2097.

    Article  Google Scholar 

  28. Jung, H. S.; Moon, D. S.; Lee, J. K. Quantitative analysis and efficient surface modification of silica nanoparticles. J. Nanomater. 2012, 2012, Article ID593471.

    Google Scholar 

  29. Izak-Nau, E.; Voetz, M.; Eiden, S.; Duschl, A.; Puntes, V. F. Altered characteristics of silica nanoparticles in bovine and human serum: The importance of nanomaterial characterization prior to its toxicological evaluation. Part. Fibre Toxicol. 2013, 10, 56.

    Article  Google Scholar 

  30. Yu, M. H.; Jambhrunkar, S.; Thorn, P.; Chen, J. Z.; Gu, W. Y.; Yu, C. Z. Hyaluronic acid modified mesoporous silica nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells. Nanoscale 2013, 5, 178–183.

    Article  Google Scholar 

  31. Izumisawa, T.; Hattori, Y.; Date, M.; Toma, K.; Maitani, Y. Cell line-dependent internalization pathways determine DNA transfection efficiency of decaarginine-peg-lipid. Int. J. Pharm. 2011, 404, 264–270.

    Article  Google Scholar 

  32. Yuan, H. Y.; Li, J.; Bao, G.; Zhang, S. L. Variable nanoparticle-cell adhesion strength regulates cellular uptake. Phys. Rev. Lett. 2010, 105, 138101.

    Article  Google Scholar 

  33. Lu, F.; Wu, S. H.; Hung, Y.; Mou, C. Y. Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small 2009, 5, 1408–1413.

    Article  Google Scholar 

  34. Luo, D.; Saltzman, W. M. Enhancement of transfection by physical concentration of DNA at the cell surface. Nat. Biotechnol. 2000, 18, 893–895.

    Article  Google Scholar 

  35. Luo, D.; Han, E.; Belcheva, N.; Saltzman, W. M. A selfassembled, modular DNA delivery system mediated by silica Nanoparticles. J. Control. Release 2004, 95, 333–341.

    Article  Google Scholar 

  36. Slowing, I. I.; Vivero-Escoto, J. L.; Wu, C. W.; Lin, V. S. Y. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Deliv. Rev. 2008, 60, 1278–1288.

    Article  Google Scholar 

  37. Zou, S. M.; Erbacher, P.; Remy, J. S.; Behr, J. P. Systemic linear polyethylenimine (L-PEI)-mediated gene delivery in the mouse. J. Gene Med. 2000, 2, 128–134.

    Article  Google Scholar 

  38. Ahn, S.; Seo, E.; Kim, K.; Lee, S. J. Controlled cellular uptake and drug efficacy of nanotherapeutics. Sci. Rep. 2013, 3, 1997.

    Google Scholar 

  39. Roy, I.; Ohulchanskyy, T. Y.; Bharali, D. J.; Pudavar, H. E.; Mistretta, R. A.; Kaur, N.; Prasad, P. N. Optical tracking of organically modified silica nanoparticles as DNA carriers: A nonviral, nanomedicine approach for gene delivery. Proc. Natl. Acad. Sci. USA 2005, 102, 279–284.

    Article  Google Scholar 

  40. Aaij, C.; Borst, P. The gel electrophoresis of DNA. Biochim. Biophys. Acta 1972, 269, 192–200.

    Article  Google Scholar 

  41. Zhu, J.; Tang, J. W.; Zhao, L. Z.; Zhou, X. F.; Wang, Y. H.; Yu, C. Z. Ultrasmall, well-dispersed, hollow siliceous spheres with enhanced endocytosis properties. Small 2010, 6, 276–282.

    Article  Google Scholar 

  42. Zhang, Y. Y.; Hu, L.; Yu, D. H.; Gao, C. Y. Influence of silica particle internalization on adhesion and migration of human dermal fibroblasts. Biomaterials 2010, 31, 8465–8474.

    Article  Google Scholar 

  43. Yin, W. X.; Xiang, P.; Li, Q. L. Investigations of the effect of DNA size in transient transfection assay using dual luciferase system. Anal. Biochem. 2005, 346, 289–294.

    Article  Google Scholar 

  44. Walczyk, D.; Bombelli, F. B.; Monopoli, M. P.; Lynch, I.; Dawson, K. A. What the cell “sees” in bionanoscience. J. Am. Chem. Soc. 2010, 132, 5761–5768.

    Article  Google Scholar 

  45. Lynch, I.; Cedervall, T.; Lundqvist, M.; Cabaleiro-Lago, C.; Linse, S.; Dawson, K. A. The nanoparticle-protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century. Adv. Colloid Interface Sci. 2007, 134–135, 167–174.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengzhong Yu.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, M., Niu, Y., Zhang, J. et al. Size-dependent gene delivery of amine-modified silica nanoparticles. Nano Res. 9, 291–305 (2016). https://doi.org/10.1007/s12274-015-0909-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0909-5

Keywords

Navigation