Skip to main content
Log in

Meso-porous silicon-coated carbon nanotube as an anode for lithium-ion battery

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Meso-porous Si-coated carbon nanotube (CNT) composite powders were prepared by combining a sol‒gel method and the magnesiothermic reduction process. Meso-porous Si-coated CNT electrodes exhibit excellent cycle and rate performances as anodes in Li-ion batteries (LIBs), which can be attributed to the efficient accommodation of volume change from meso-porous Si structure and the enhanced electrical conductivity from CNT core. This simple synthesis and subsequent reduction process provide a scalable route for the large-scale production of Si-C composite nanostructures, which can be utilized in a variety of applications, such as in photocatalysis, photoelectrochemical cells (PECs), and LIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Obrovac, M. N.; Christensen, L. Structural changes in silicon anodes during lithium insertion/extraction. Electrochem. Solid-State Lett. 2004, 7, A93–A96.

    Article  Google Scholar 

  2. Green, M.; Fielder, E.; Scrosati, B.; Wachtler, M.; Serra Moreno, J. Structured silicon anodes for lithium battery applications. Electrochem. Solid-State Lett. 2003, 6, A75–A79.

    Article  Google Scholar 

  3. Kim, H.; Seo, M.; Park, M.-H.; Cho, J. A critical size of silicon nano-anodes for lithium rechargeable batteries. Angew. Chem., Int. Ed. 2010, 49, 2146–2149.

    Article  Google Scholar 

  4. Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35.

    Article  Google Scholar 

  5. Jing, S. L.; Jiang, H.; Hu, Y. J.; Li, C. Z. Directly grown Si nanowire arrays on Cu foam with a coral-like surface for lithium-ion batteries. Nanoscale 2014, 6, 14441–14445.

    Article  Google Scholar 

  6. Chen, D. Y.; Mei, X.; Ji, G.; Lu, M. H.; Xie, J. P.; Lu, J. M.; Lee, J. Y. Reversible lithium-ion storage in silver-treated nanoscale hollow porous silicon particles. Angew. Chem., Int. Ed. 2012, 51, 2409–2413.

    Article  Google Scholar 

  7. Kim, W.-S.; Hwa, Y.; Shin, J.-H.; Yang, M.; Sohn, H.-J.; Hong, S.-H. Scalable synthesis of silicon nanosheets from sand as an anode for Li-ion batteries. Nanoscale 2014, 6, 4297–4302.

    Article  Google Scholar 

  8. Jing, S. L.; Jiang, H.; Hu, Y. J.; Li, C. Z. Graphene supported mesoporous single crystal silicon on Cu foam as a stable lithium-ion battery anode. J. Mater. Chem. A 2014, 2, 16360–16364.

    Article  Google Scholar 

  9. Hwa, Y.; Kim, W.-S.; Hong, S.-H.; Sohn, H.-J. High capacity and rate capability of core–shell structured nano-Si/C anode for Li-ion batteries. Electrochim. Acta 2012, 71, 201–205.

    Article  Google Scholar 

  10. Evanoff, K.; Khan, J.; Balandin, A. A.; Magasinski, A.; Ready, W. J.; Fuller, T. F.; Yushin, G. Towards ultrathick battery electrodes: Aligned carbon nanotube—Enabled architecture. Adv. Mater. 2012, 24, 533–537.

    Article  Google Scholar 

  11. Fan, Y.; Zhang, Q.; Xiao, Q. Z.; Wang, X. H.; Huang, K. High performance lithium ion battery anodes based on carbon nanotube–silicon core–shell nanowires with controlled morphology. Carbon 2013, 59, 264–269.

    Article  Google Scholar 

  12. Wang, W.; Epur, R.; Kumta, P. N. Vertically aligned silicon/carbon nanotube (VASCNT) arrays: Hierarchical anodes for lithium-ion battery. Electrochem. Comm. 2011, 13, 429–432.

    Article  Google Scholar 

  13. Cui, L.-F.; Hu, L. B.; Choi, J. W.; Cui, Y. Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries. ACS Nano 2010, 4, 3671–3678.

    Article  Google Scholar 

  14. Chou, S.-L.; Zhao, Y.; Wang, J.-Z.; Chen, Z.-X.; Liu, H.-K.; Dou, S.-X. Silicon/single-walled carbon nanotube composite paper as a flexible anode material for lithium ion batteries. J. Phys. Chem. C 2010, 114, 15862–15867.

    Article  Google Scholar 

  15. Evanoff, K.; Benson, J.; Schauer, M.; Kovalenko, I.; Lashmore, D.; Ready, W. J.; Yushin, G. Ultra strong silicon-coated carbon nanotube nonwoven fabric as a multifunctional lithium-ion battery anode. ACS Nano 2012, 6, 9837–9845.

    Article  Google Scholar 

  16. Hu, L. B.; Liu, N.; Eskilsson, M.; Zheng, G. Y.; McDonough, J.; Wågberg, L.; Cui, Y. Silicon-conductive nanopaper for Li-ion batteries. Nano Energy 2013, 2, 138–145.

    Article  Google Scholar 

  17. Hu, L. B.; Wu, H.; Gao, Y. F.; Cao, A. Y.; Li, H. B.; McDough, J.; Xie, X.; Zhou, M.; Cui, Y. Silicon–carbon nanotube coaxial sponge as Li-ion anodes with high areal capacity. Adv. Energy Mater. 2011, 1, 523–527.

    Article  Google Scholar 

  18. Jing, S. L.; Jiang, H.; Hu, Y. J.; Shen, J. H.; Li, C. Z. Face-to-face contact and open-void coinvolved Si/C nanohybrids lithium-ion battery anodes with extremely long cycle life. Adv. Funct. Mater. 2015, 25, 5395–5401.

    Article  Google Scholar 

  19. Bao, Z. H.; Weatherspoon, M. R.; Shian, S.; Cai, Y.; Graham, P. D.; Allan, S. M.; Ahmad, G.; Dickerson, M. B.; Church, B. C.; Kang, Z. T. et al. Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas. Nature 2007, 446, 172–175.

    Article  Google Scholar 

  20. Jia, H. P.; Gao, P. F.; Yang, J.; Wang, J. L.; Nuli, Y.; Yang, Z. Novel three-dimensional mesoporous silicon for high power lithium-ion battery anode material. Adv. Energy Mater. 2011, 1, 1036–1039.

    Article  Google Scholar 

  21. Yoo, J.-K.; Kim, J.; Jung, Y. S.; Kang, K. Scalable fabrication of silicon nanotubes and their application to energy storage. Adv. Mater. 2012, 24, 5452–5456.

    Article  Google Scholar 

  22. Feng, X. J.; Yang, J.; Bie, Y. T.; Wang, J. L.; Nuli, Y.; Lu. W. Nano/micro-structured Si/CNT/C composite from nano-SiO2 for high power lithium ion batteries. Nanoscale 2014, 6, 12532–12539.

    Article  Google Scholar 

  23. Zhu, X. F.; Xia, B. Y.; Guo, M. Y.; Zhang, Q.; Li, J. X. Synthesis of carbon nanotube composites with size-controlled silicon nanoparticles. Carbon 2010, 48, 3296–3299.

    Article  Google Scholar 

  24. Choi, S.; Lee, J. C.; Park, O.; Chun, M.-J.; Choi, N.-S.; Park, S. Synthesis of micro-assembled Si/titanium silicide nanotube anodes for high-performance lithium-ion batteries. J. Mater. Chem. A 2013, 1, 10617–10621.

    Article  Google Scholar 

  25. Lipson, A. L.; Chattopadhyay, S.; Karmel, H. J.; Fister, T. T.; Emery, J. D.; Dravid, V. P.; Thackeray, M. M.; Fenter, P. A.; Bedzyk, M. J.; Hersam, M. C. Enhanced lithiation of doped 6H silicon carbide (0001) via high temperature vacuum growth of epitaxial graphene. J. Phys. Chem. C 2012, 116, 20949–20957.

    Article  Google Scholar 

  26. Liu, N.; Huo, K. F.; McDowell, M. T.; Zhao, J.; Cui, Y. Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes. Sci. Rep. 2013, 3, 1919.

    Google Scholar 

  27. Li, H.; Huang, X. J.; Chen, L. Q.; Zhou, G. W.; Zhang, Z.; Yu, D. P.; Mo, Y. J.; Pei, N. The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature. Solid State Ionics 2000, 135, 181–191.

    Article  Google Scholar 

  28. Li, J.; Dahn, J. R. An in situ X-ray diffraction study of the reaction of Li with crystalline Si. J. Electrochem. Soc. 2007, 154, A156–A161.

    Article  Google Scholar 

  29. Netz, A.; Huggins, R. A.; Weppner, W. The formation and properties of amorphous silicon as negative electrode reactant in lithium systems. J. Power Sources 2003, 119–121, 95–100.

    Article  Google Scholar 

  30. Hatchard, T. D.; Dahn, J. R. In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. J. Electrochem. Soc. 2004, 151, A838–A842.

    Article  Google Scholar 

  31. Wang, W.; Ruiz, I.; Ahmed, K.; Bay, H. H.; George, A. S.; Wang, J.; Butler, J.; Ozkan, M.; Ozkan, C. S. Silicon decorated cone shaped carbon nanotube clusters for lithium ion battery anodes. Small 2014, 10, 3389–3396.

    Article  Google Scholar 

  32. Wang, W.; Kumta, P. N. Nanostructured hybrid silicon/carbon nanotube heterostructures: Reversible high-capacity lithiumion anodes. ACS Nano 2010, 4, 2233–2241.

    Article  Google Scholar 

  33. Karki, K.; Epstein, E.; Cho, J.-H.; Jia, Z.; Li, T.; Picraux, S. T.; Wang, C. S.; Cumings, J. Lithium-assisted electrochemical welding in silicon nanowire battery electrodes. Nano Lett. 2012, 12, 1392–1397.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong-Hyeon Hong.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, WS., Choi, J. & Hong, SH. Meso-porous silicon-coated carbon nanotube as an anode for lithium-ion battery. Nano Res. 9, 2174–2181 (2016). https://doi.org/10.1007/s12274-016-1106-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1106-x

Keywords

Navigation