Skip to main content
Log in

Ferritin surplus in mouse spleen 14 months after intravenous injection of iron oxide nanoparticles at clinical dose

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In this study, we followed the biodegradation of ultra-small superparamagnetic iron oxide nanoparticles injected intravenously at clinical doses in mice. An advanced fitting procedure for magnetic susceptibility curves and low-temperature hysteresis loops was used to fully characterize the magnetic size distribution as well as the magnetic anisotropy energy of the injected P904 nanoparticles (Guerbet Laboratory). Additional magnetometry measurements and transmission electronic microscopy observations were systematically performed to examine dehydrated samples from the spleen and liver of healthy C57B16 mice after nanoparticle injection, with sacrifice of the mice for up to 14 months. At 3 months after injection, the magnetic properties of the spleen and liver were dramatically different. While the liver showed no magnetic signals other than those also present in the reference species, the spleen showed an increased magnetic signal attributed to ferritin. This surplus of ferritin remained constant up to 14 months after injection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yen, S. K.; Padmanabhan, P.; Selvan, S. T. Multifunctional iron oxide nanoparticles for diagnostics, therapy and macromolecule delivery. Theranostics 2013, 3, 986–1003.

    Article  Google Scholar 

  2. Wu, L. C.; Cao, Y. F.; Liao, C.; Huang, J. H.; Gao, F. Diagnostic performance of USPIO-enhanced MRI for lymphnode metastases in different body regions: A meta-analysis. Eur. J. Radiol. 2011, 80, 582–589.

    Article  Google Scholar 

  3. Harnan, S. E.; Cooper, K. L.; Meng, Y.; Ward, S. E.; Fitzgerald, P.; Papaioannou, D.; Ingram, C.; Lorenz, E.; Wilkinson, I. D.; Wyld, L. Magnetic resonance for assessment of axillary lymph node status in early breast cancer: A systematic review and meta-analysis. Eur. J. Surg. Oncol. 2011, 37, 928–936.

    Article  Google Scholar 

  4. Aime, S.; Caravan, P. Biodistribution of gadolinium-based contrast agents, including gadolinium deposition. J. Magn. Reson. Imaging 2009, 30, 1259–1267.

    Article  Google Scholar 

  5. Corot, C.; Robert, P.; Idée, J.-M.; Port, M. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv. Drug Deliv. Rev. 2006, 58, 1471–1504.

    Article  Google Scholar 

  6. López-Castro, J. D.; Maraloiu, A. V.; Delgado, J. J.; Calvino, J. J.; Blanchin, M.-G.; Gálvez, N.; Dominguez-Vera, J. M. From synthetic to natural nanoparticles: Monitoring the biodegradation of SPIO (P904) into ferritin by electron microscopy. Nanoscale 2011, 3, 4597–4599.

    Article  Google Scholar 

  7. Lévy, M.; Lagarde, F.; Maraloiu, V.-A.; Blanchin, M.-G.; Gendron, F.; Wilhelm, C.; Gazeau, F. Degradability of superparamagnetic nanoparticles in a model of intracellular environment: Follow-up of magnetic, structural and chemical properties. Nanotechnology 2010, 21, 395103.

    Article  Google Scholar 

  8. Levy, M.; Luciani, N.; Alloyeau, D.; Elgrabli, D.; Deveaux, V.; Pechoux, C.; Chat, S.; Wang, G.; Vats, N.; Gendron, F. et al. Long term in vivo biotransformation of iron oxide nanoparticles. Biomaterials 2011, 32, 3988–3999.

    Article  Google Scholar 

  9. Levy, M.; Wilhelm, C.; Luciani, N.; Deveaux, V.; Gendron, F.; Luciani, A.; Devaud, M.; Gazeau, F. Nanomagnetism reveals the intracellular clustering of iron oxide nanoparticles in the organism. Nanoscale 2011, 3, 4402–4410.

    Article  Google Scholar 

  10. Lévy, M.; Wilhelm, C.; Devaud, M.; Levitz, P.; Gazeau, F. How cellular processing of superparamagnetic nanoparticles affects their magnetic behavior and NMR relaxivity. Contrast Media Mol. Imaging 2012, 7, 373–383.

    Article  Google Scholar 

  11. Lartigue, L.; Alloyeau, D.; Kolosnjaj-Tabi, J.; Javed, Y.; Guardia, P.; Riedinger, A.; Péchoux, C.; Pellegrino, T.; Wilhelm, C.; Gazeau, F. Biodegradation of iron oxide nanocubes: High-resolution in situ monitoring. ACS Nano 2013, 7, 3939–3952.

    Article  Google Scholar 

  12. Pauling, L.; Coryell, C. D. The magnetic properties and structure of hemoglobin, oxyhemoglobin and carbonmonoxyhemoglobin. Proc. Natl. Acad. Sci. USA 1936, 22, 210–216.

    Article  Google Scholar 

  13. Bell, S. H.; Weir, M. P.; Dickson, D. P.; Gibson, J. F.; Sharp, G. A.; Peters, T. J. Mössbauer spectroscopic studies of human haemosiderin and ferritin. Biochim. Biophys. Acta 1984, 787, 227–236.

    Article  Google Scholar 

  14. Tamion, A.; Hillenkamp, M.; Tournus, F.; Bonet, E.; Dupuis, V. Accurate determination of the magnetic anisotropy in cluster-assembled nanostructures. Appl. Phys. Lett. 2009, 95, 062503.

    Article  Google Scholar 

  15. Tamion, A.; Bonet, E.; Tournus, F.; Raufast, C.; Hillion, A.; Gaier, O.; Dupuis, V. Efficient hysteresis loop simulations of nanoparticle assemblies beyond the uniaxial anisotropy. Phys. Rev. B 2012, 85, 134430.

    Article  Google Scholar 

  16. Sigovan, M.; Boussel, L.; Sulaiman, A.; Sappey-Marinier, D.; Alsaid, H.; Desbleds-Mansard, C.; Ibarrola, D.; Gamondès, D.; Corot, C.; Lancelot, E. et al. Rapid-clearance iron nanoparticles for inflammation imaging of atherosclerotic plaque: Initial experience in animal model. Radiology 2009, 252, 401–409.

    Article  Google Scholar 

  17. Wilhelm, C.; Gazeau, F.; Bacri, J.-C. Magnetophoresis and ferromagnetic resonance of magnetically labeled cells. Eur. Biophys. J. 2002, 31, 118–125.

    Article  Google Scholar 

  18. Jamet, M.; Wernsdorfer, W.; Thirion, C.; Mailly, D.; Dupuis, V.; Mélinon, P.; Pérez, A. Magnetic anisotropy of a single cobalt nanocluster. Phys. Rev. Lett. 2001, 86, 4676–4679.

    Article  Google Scholar 

  19. Oyarzún, S.; Tamion, A.; Tournus, F.; Dupuis, V.; Hillenkamp, M. Size effects in the magnetic anisotropy of embedded cobalt nanoparticles: From shape to surface. Sci. Rep. 2015, 5, 14749.

    Article  Google Scholar 

  20. Thiaville, A. Coherent rotation of magnetization in three dimensions: A geometrical approach. Phys. Rev. B 2000, 61, 12221–12232.

    Article  Google Scholar 

  21. Gutiérrez, L.; Lázaro, F. J.; Abadía, A. R.; Romero, M. S.; Quintana, C.; Morales, M. P.; Patiño, C.; Arranz, R. Bioinorganic transformations of liver iron deposits observed by tissue magnetic characterisation in a rat model. J. Inorg. Biochem. 2006, 100, 1790–1799.

    Article  Google Scholar 

  22. Lévy, M.; Gazeau, F.; Bacri, J.-C.; Wilhelm, C.; Devaud, M. Modeling magnetic nanoparticle dipole–dipole interactions inside living cells. Phys. Rev. B 2011, 84, 075480.

    Article  Google Scholar 

  23. Henkel, O. Remanenzverhalten und Wechselwirkungen in hartmagnetischen Teilchenkollektiven. Phys. Stat. Sol. B 1964, 7, 919–929.

    Article  Google Scholar 

  24. Gamarra, L. F.; Pontuschka, W. M.; Amaro, E., Jr.; Costa-Filho, A. J.; Brito, G. E. S.; Vieira, E. D.; Carneiro, S. M.; Escriba, D. M.; Falleiros, A. M. F.; Salvador, V. L. Kinetics of elimination and distribution in blood and liver of biocompatible ferrofluids based on Fe3O4 nanoparticles: An EPR and XRF study. Mater. Sci. Eng. C 2008, 28, 519–525.

    Article  Google Scholar 

  25. Luciani, N.; Wilhelm, C.; Gazeau, F. The role of cell-released microvesicles in the intercellular transfer of magnetic nanoparticles in the monocyte/macrophage system. Biomaterials 2010, 31, 7061–7069.

    Article  Google Scholar 

  26. Allen, P. D.; St Pierre, T. G.; Chua-anusorn, W.; Ström, V.; Rao, K. V. Low-frequency low-field magnetic susceptibility of ferritin and hemosiderin. Biochim. Biophys. Acta 2000, 1500, 186–196.

    Article  Google Scholar 

  27. Brem, F.; Stamm, G.; Hirt, A. M. Modeling the magnetic behavior of horse spleen ferritin with a two-phase core structure. J. Appl. Phys. 2006, 99, 123906.

    Article  Google Scholar 

  28. Mohie-Eldin, M.-E.; Frankel, R. B.; Gunther, L. A comparison of the magnetic properties of polysaccharide iron complex (PIC) and ferritin. J. Magn. Magn. Mater. 1994, 135, 65–81.

    Article  Google Scholar 

  29. Tejada, J.; Zhang, X. X. On magnetic relaxation in antiferromagnetic horse-spleen ferritin proteins. J. Phys.: Condens. Matter 1994, 6, 263–266.

    Google Scholar 

  30. Kilcoyne, S. H.; Cywinski, R. Ferritin: A model superparamagnet. J. Magn. Magn. Mater. 1995, 140–144, 1466–1467.

    Article  Google Scholar 

  31. Makhlouf, S. A.; Parker, F. T.; Berkowitz, A. E. Magnetic hysteresis anomalies in ferritin. Phys. Rev. B 1997, 55, R14717–R14720.

    Article  Google Scholar 

  32. Maraloiu, V. A.; Blanchin, M.-G. Multiscale Study of Magnetic Nanovectors; Scholars’ Press: Saarbrücken, Germany, 2013.

    Google Scholar 

  33. Wood, J. C. Guidelines for quantifying iron overload. In Hematology/the Education Program of the American Society of Hematology American Society of Hematology Education Program; The Society: Washington, DC, 2014; pp 210–215.

    Google Scholar 

  34. Storey, P.; Lim, R. P.; Chandarana, H.; Rosenkrantz, A. B.; Kim, D.; Stoffel, D. R.; Lee, V. S. MRI assessment of hepatic iron clearance rates after USPIO administration in healthy adults. Invest. Radiol. 2012, 47, 717–724.

    Article  Google Scholar 

  35. Hunter, J. E. Variable effects of iron status on the concentration of ferritin in rat plasma, liver, and spleen. J. Nutr. 1978, 108, 497–505.

    Google Scholar 

  36. Richter, G. W. The iron-loaded cell—The cytopathology of iron storage. A review. Am. J. Pathol. 1978, 91, 362–404.

    Google Scholar 

  37. Gustafson, H. H.; Holt-Casper, D.; Grainger, D. W.; Ghandehari, H. Nanoparticle uptake: The phagocyte problem. Nano Today 2015, 10, 487–510.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexandre Tamion or Matthias Hillenkamp.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamion, A., Hillenkamp, M., Hillion, A. et al. Ferritin surplus in mouse spleen 14 months after intravenous injection of iron oxide nanoparticles at clinical dose. Nano Res. 9, 2398–2410 (2016). https://doi.org/10.1007/s12274-016-1126-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1126-6

Keywords

Navigation