Skip to main content
Log in

General synthesis of high-performing magneto-conjugated polymer core–shell nanoparticles for multifunctional theranostics

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Recently, increasing attention has been paid to magneto-conjugated polymer core–shell nanoparticles (NPs) as theranostic platforms. However, the utilization of surfactants and extra oxidizing agents with potential toxicity in synthesis, the lack of general methods for the controlled synthesis of various kinds of magnetic NP (MNP)@conjugated polymer NPs, and the difficulty of obtaining balanced magneto-optical properties have greatly limited the applications of magneto-conjugated polymers in theranostics. We developed an in situ surface polymerization method free of extra surfactants and oxidizing agents to synthesize MNP@polypyrrole (PPy) NPs with balanced, prominent magneto-optical properties. MNP@PPy NPs with an adjustable size, different shapes, and a controlled shell thickness were obtained using this method. The method was extended to synthesize other MNP-conjugated polymer core–shell NPs, such as MNP@polyaniline and MNP@poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS). We discuss the formation mechanism of the proposed method according to our experimental results. Finally, using the optical and magnetic properties of the obtained MNP@PEDOT:PSS NPs, in vivo multimodal imaging-guided hyperthermia was induced in mice, achieving an excellent tumor-ablation therapeutic effect. Our work is beneficial for extending the application of MNP-conjugated polymer core–shell NPs in the biomedical field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Siegel, R. L.; Miller, K. D.; Jemal, A. Cancer statistics, 2015. CA Cancer J. Clin. 2015, 65, 5–29.

    Article  Google Scholar 

  2. Chen, X. Y.; Gambhlr, S. S.; Cheon, J. Theranostic nanomedicine. Acc. Chem. Res. 2011, 44, 841.

    Article  Google Scholar 

  3. Deveza, L.; Choi, J.; Yang, F. Therapeutic angiogenesis for treating cardiovascular diseases. Theranostics 2012, 2, 801–814.

    Article  Google Scholar 

  4. Muthu, M. S.; Leong, D. T.; Mei, L.; Feng, S. S. Nanotheranostics—Application and further development of nanomedicine strategies for advanced theranostics. Theranostics 2014, 4, 660–677.

    Article  Google Scholar 

  5. Song, X. R.; Wang, X. Y.; Yu, S. X.; Cao, J. B.; Li, S. H.; Li, J.; Liu, G.; Yang, H. H.; Chen, X. Y. Co9Se8 nanoplates as a new theranostic platform for photoacoustic/magnetic resonance dual-modal-imaging-guided chemo-photothermal combination therapy. Adv. Mater. 2015, 27, 3285–3291.

    Article  Google Scholar 

  6. Li, J. W.; Arnal, B.; Wei, C. W.; Shang, J.; Nguyen, T.-M.; O’Donnell, M.; Gao, X. H. Magneto-optical nanoparticles for cyclic magnetomotive photoacoustic imaging. ACS Nano 2015, 9, 1964–1976.

    Article  Google Scholar 

  7. Yu, J.; Yang, C.; Li, J. D. S.; Ding, Y. C.; Zhang, L.; Yousaf, M. Z.; Lin, J.; Pang, R.; Wei, L. B.; Xu, L. L. et al. Multifunctional Fe5C2 nanoparticles: A targeted theranostic platform for magnetic resonance imaging and photoacoustic tomography-guided photothermal therapy. Adv. Mater. 2014, 26, 4114–4120.

    Article  Google Scholar 

  8. Yu, J.; Ju, Y. M.; Zhao, L. Y.; Chu, X.; Yang, W. L.; Tian, Y. L.; Sheng, F. G.; Lin, J.; Liu, F.; Dong, Y. H. et al. Multistimuli-regulated photochemothermal cancer therapy remotely controlled via Fe5C2 nanoparticles. ACS Nano 2016, 10, 159–169.

    Article  Google Scholar 

  9. Anselmo, A. C.; Mitragotri, S. A review of clinical translation of inorganic nanoparticles. AAPS J. 2015, 17, 1041–1054.

    Article  Google Scholar 

  10. Tassa, C.; Shaw, S. Y.; Weissleder, R. Dextran-coated iron oxide nanoparticles: A versatile platform for targeted molecular imaging, molecular diagnostics, and therapy. Acc. Chem. Res. 2011, 44, 842–852.

    Article  Google Scholar 

  11. Wu, H. X.; Liu, G.; Zhuang, Y. M.; Wu, D. M.; Zhang, H. Q.; Yang, H.; Hu, H.; Yang, S. P. The behavior after intravenous injection in mice of multiwalled carbon nanotube/Fe3O4 hybrid MRI contrast agents. Biomaterials 2011, 32, 4867–4876.

    Article  Google Scholar 

  12. Kwon, O. S.; Park, S. J.; Jang, J. A high-performance VEGF aptamer functionalized polypyrrole nanotube biosensor. Biomaterials 2010, 31, 4740–4747.

    Article  Google Scholar 

  13. Runge, M. B.; Dadsetan, M.; Baltrusaitis, J.; Knight, A. M.; Ruesink, T.; Lazcano, E. A.; Lu, L. C.; Windebank, A. J.; Yaszemski, M. J. The development of electrically conductive polycaprolactone fumarate-polypyrrole composite materials for nerve regeneration. Biomaterials 2010, 31, 5916–5926.

    Article  Google Scholar 

  14. Fonner, J. M.; Forciniti, L.; Nguyen, H.; Byrne, J. D.; Kou, Y.-F.; Syeda-Nawaz, J.; Schmidt, C. E. Biocompatibility implications of polypyrrole synthesis techniques. Biomed. Mater. 2008, 3, 034124.

    Article  Google Scholar 

  15. Ramanaviciene, A.; Kausaite, A.; Tautkus, S.; Ramanavicius, A. Biocompatibility of polypyrrole particles: An in-vivo study in mice. J. Pharm. Pharmacol. 2007, 59, 311–315.

    Article  Google Scholar 

  16. Zha, Z. B.; Yue, X. L.; Ren, Q. S.; Dai, Z. F. Uniform polypyrrole nanoparticles with high photothermal conversion efficiency for photothermal ablation of cancer cells. Adv. Mater. 2013, 25, 777–782.

    Article  Google Scholar 

  17. Yang, K.; Xu, H.; Cheng, L.; Sun, C. Y.; Wang, J.; Liu, Z. In vitro and in vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles. Adv. Mater. 2012, 24, 5586–5592.

    Article  Google Scholar 

  18. Cheng, L.; Yang, K.; Chen, Q.; Liu, Z. Organic stealth nanoparticles for highly effective in vivo near-infrared photothermal therapy of cancer. ACS Nano 2012, 6, 5605–5613.

    Article  Google Scholar 

  19. Bardhan, R.; Chen, W. X.; Perez-Torres, C.; Bartels, M.; Huschka, R. M.; Zhao, L. L.; Morosan, E.; Pautler, R. G.; Joshi, A.; Halas, N. J. Nanoshells with targeted simultaneous enhancement of magnetic and optical imaging and photothermal therapeutic response. Adv. Funct. Mater. 2009, 19, 3901–3909.

    Article  Google Scholar 

  20. Wang, J.; Zhu, G. Z.; You, M. X.; Song, E. Q.; Shukoor, M. I.; Zhang, K. J.; Altman, M. B.; Chen, Y.; Zhu, Z.; Huang, C. Z. et al. Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy. ACS Nano 2012, 6, 5070–5077.

    Article  Google Scholar 

  21. Song, X. J.; Gong, H.; Yin, S. N.; Cheng, L.; Wang, C.; Li, Z. W.; Li, Y. G.; Wang, X. Y.; Liu, G.; Liu, Z. Ultra-small iron oxide doped polypyrrole nanoparticles for in vivo multimodal imaging guided photothermal therapy. Adv. Funct. Mater. 2014, 24, 1194–1201.

    Article  Google Scholar 

  22. Tian, Q. W.; Wang, Q.; Yao, K. X.; Teng, B. Y.; Zhang, J. Z.; Yang, S. P.; Han, Y. Multifunctional polypyrrole@Fe3O4 nanoparticles for dual-modal imaging and in vivo photothermal cancer therapy. Small 2014, 10, 1063–1068.

    Article  Google Scholar 

  23. Wang, C.; Xu, H.; Liang, C.; Liu, Y. M.; Li, Z. W.; Yang, G. B.; Cheng, L.; Li, Y. G.; Liu, Z. Iron oxide@polypyrrole nanoparticles as a multifunctional drug carrier for remotely controlled cancer therapy with synergistic antitumor effect. ACS Nano 2013, 7, 6782–6795.

    Article  Google Scholar 

  24. Gong, H.; Cheng, L.; Xiang, J.; Xu, H.; Feng, L. Z.; Shi, X. Z.; Liu, Z. Near-infrared absorbing polymeric nanoparticles as a versatile drug carrier for cancer combination therapy. Adv. Funct. Mater. 2013, 23, 6059–6067.

    Article  Google Scholar 

  25. Xiao, Q.; Tan, X. K.; Ji, L. L.; Xue, J. Preparation and characterization of polyaniline/nano-Fe3O4 composites via a novel pickering emulsion route. Synth. Met. 2007, 157, 784–791.

    Article  Google Scholar 

  26. Minehan, D. S.; Marx, K. A.; Tripathy, S. K. Kinetics of DNA binding to electrically conducting polypyrrole films. Macromolecules 1994, 27, 777–783.

    Article  Google Scholar 

  27. Zhang, H.; Zhong, X.; Xu, J. J.; Chen, H.-Y. Fe3O4/ polypyrrole/Au nanocomposites with core/shell/shell structure: Synthesis, characterization, and their electrochemical properties. Langmuir 2008, 24, 13748–13752.

    Article  Google Scholar 

  28. Zhang, X.; Xu, X.; Li, T.; Lin, M.; Lin, X.; Zhang, H.; Sun, H.; Yang, B. Composite photothermal platform of polypyrrole-enveloped Fe3O4 nanoparticle self-assembled superstructures. ACS Appl. Mater. Interfaces 2014, 6, 14552–14561.

    Article  Google Scholar 

  29. Zhang, Z. M.; Li, Q.; Yu, L. M.; Cui, Z. J.; Zhang, L. J.; Bowmaker, G. A. Highly conductive polypyrrole/Fe2O3 nanospheres with good magnetic properties obtained through an improved chemical one-step method. Macromolecules 2011, 44, 4610–4615.

    Article  Google Scholar 

  30. Gai, L. G.; Han, X. Y.; Hou, Y. H.; Chen, J.; Jiang, H. H.; Chen, X. C. Surfactant-free synthesis of Fe3O4@PANI and Fe3O4@PPy microspheres as adsorbents for isolation of pcr-ready DNA. Dalton Trans. 2013, 42, 1820–1826.

    Article  Google Scholar 

  31. Jiang, W.; Kim, B. Y. S.; Rutka, J. T.; Chan, W. C. W. Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol. 2008, 3, 145–150.

    Article  Google Scholar 

  32. Stigliano, C.; Key, J.; Ramirez, M.; Aryal, S.; Decuzzi, P. Radiolabeled polymeric nanoconstructs loaded with docetaxel and curcumin for cancer combinatorial therapy and nuclear imaging. Adv. Funct. Mater. 2015, 25, 3371–3379.

    Article  Google Scholar 

  33. Xuan, S. H.; Wang, F.; Wang, Y. X. J.; Yu, J. C.; Leung, K. C. F. Facile synthesis of size-controllable monodispersed ferrite nanospheres. J. Mater. Chem. 2010, 20, 5086–5094.

    Article  Google Scholar 

  34. Gao, Q.; Zhang, J. L.; Hong, G.-Y.; Ni, J. Z. Solvothermal synthesis of the magnetite micro-nano particles (Fe3O4) with different morphologies. Chem. J. Chin. Univ. 2011, 32, 552–559.

    Google Scholar 

  35. Levin, C. S.; Hofmann, C.; Ali, T. A.; Kelly, A. T.; Morosan, E.; Nordlander, P.; Whitmire, K. H.; Halas, N. J. Magnetic-plasmonic core–shell nanoparticles. ACS Nano 2009, 3, 1379–1388.

    Article  Google Scholar 

  36. Di Corato, R.; Béalle, G.; Kolosnjaj-Tabi, J.; Espinosa, A.; Clément, O.; Silva, A. K. A.; Ménager, C.; Wilhelm, C. Combining magnetic hyperthermia and photodynamic therapy for tumor ablation with photoresponsive magnetic liposomes. ACS Nano 2015, 9, 2904–2916.

    Article  Google Scholar 

  37. Wang, Y. Q.; Zou, B. F.; Gao, T.; Wu, X. P.; Lou, S. Y.; Zhou, S. M. Synthesis of orange-like Fe3O4/PPy composite microspheres and their excellent Cr(VI) ion removal properties. J. Mater. Chem. 2012, 22, 9034–9040.

    Article  Google Scholar 

  38. Alves, K. G. B.; Andrade, C. A. S.; Campello, S. L.; de Souza, R. E.; de Melo, C. P. Magnetite/polypyrrole hybrid nanocomposites as a promising magnetic resonance imaging contrast material. J. Appl. Polym. Sci. 2013, 128, 3170–3176.

    Article  Google Scholar 

  39. Kim, S.; Oh, W. K.; Jeong, Y. S.; Hong, J. Y.; Cho, B. R.; Hahn, J. S.; Jang, J. Cytotoxicity of, and innate immune response to, size-controlled polypyrrole nanoparticles in mammalian cells. Biomaterials 2011, 32, 2342–2350.

    Article  Google Scholar 

  40. Walter, A.; Billotey, C.; Garofalo, A.; Ulhaq-Bouillet, C.; Lefè vre, C.; Taleb, J.; Laurent, S.; Vander Elst, L.; Muller, R. N.; Lartigue, L. et al. Mastering the shape and composition of dendronized iron oxide nanoparticles to tailor magnetic resonance imaging and hyperthermia. Chem. Mater. 2014, 26, 5252–5264.

    Article  Google Scholar 

  41. Xu, J. K.; Shi, G. Q.; Xu, Z. J.; Chen, F. G.; Hong, X. Y. Low potential electrochemical polymerization of 3-chlorothiophene in mixed electrolytes of boron trifluoride diethyl etherate and trifluoroacetic acid. J. Electroanalyt. Chem. 2001, 514, 16–25.

    Article  Google Scholar 

  42. Kvarnström, C.; Neugebauer, H.; Blomquist, S.; Ahonen, H. J.; Kankare, J.; Ivaska, A. In situ spectroelectrochemical characterization of poly(3,4-ethylenedioxythiophene). Electrochim. Acta 1999, 44, 2739–2750.

    Article  Google Scholar 

  43. Liu, Y.; Song, Z. J.; Zhang, Q. H.; Zhou, Z. X.; Tang, Y. J.; Wang, L. J.; Zhu, J. J.; Luo, W.; Jiang, W. Preparation of bulk AgNWs/PEDOT:PSS composites: A new model towards high-performance bulk organic thermoelectric materials. RSC Adv. 2015, 5, 45106–45112.

    Article  Google Scholar 

  44. Sun, Z. C.; Geng, Y. H.; Li, J.; Jing, X. B.; Wang, F. S. Chemical polymerization of aniline with hydrogen peroxide as oxidant. Synth. Met. 1997, 84, 99–100.

    Article  Google Scholar 

  45. Rohrer, M.; Bauer, H.; Mintorovitch, J.; Requardt, M.; Weinmann, H. J. Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest. Radiol. 2005, 40, 715–724.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the professional technical support for the MRI analysis by Center for Biomedical Imaging Research, Tsinghua University. We thank Tsinghua University Initiative Scientific Research Program (No. 20131089199), National Key Research and Development Program of China (No. 2016YFB0700800), and National Natural Science Foundation of China (Nos. 81172182 and 81671829) for support of funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaodan Sun or Feiyu Kang.

Electronic supplementary material

12274_2016_1330_MOESM1_ESM.pdf

General synthesis of high-performing magneto-conjugated polymer core–shell nanoparticles for multifunctional theranostics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, H., Zhao, L., Shang, W. et al. General synthesis of high-performing magneto-conjugated polymer core–shell nanoparticles for multifunctional theranostics. Nano Res. 10, 704–717 (2017). https://doi.org/10.1007/s12274-016-1330-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1330-4

Keywords

Navigation