Skip to main content
Log in

Template-directed synthesis of nitrogen- and sulfur-codoped carbon nanowire aerogels with enhanced electrocatalytic performance for oxygen reduction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Heteroatom doping, precise composition control, and rational morphology design are efficient strategies for producing novel nanocatalysts for the oxygen reduction reaction (ORR) in fuel cells. Herein, a cost-effective approach to synthesize nitrogen- and sulfur-codoped carbon nanowire aerogels using a hard templating method is proposed. The aerogels prepared using a combination of hydrothermal treatment and carbonization exhibit good catalytic activity for the ORR in alkaline solution. At the optimal annealing temperature and mass ratio between the nitrogen and sulfur precursors, the resultant aerogels show comparable electrocatalytic activity to that of a commercial Pt/C catalyst for the ORR. Importantly, the optimized catalyst shows much better long-term stability and satisfactory tolerance for the methanol crossover effect. These codoped aerogels are expected to have potential applications in fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, S.; Shao, Y. Y.; Yin, G. P.; Lin, Y. H. Recent progress in nanostructured electrocatalysts for PEM fuel cells. J. Mater. Chem. A 2013, 1, 4631–4641.

    Article  Google Scholar 

  2. Zhu, C. Z.; Du, D.; Eychmuller, A.; Lin, Y. H. Engineering ordered and nonordered porous noble metal nanostructures: Synthesis, assembly, and their applications in electrochemistry. Chem. Rev. 2015, 115, 8896–8943.

    Article  Google Scholar 

  3. Liang, H. W.; Wu, Z. Y.; Chen, L. F.; Li, C.; Yu, S. H. Bacterial cellulose derived nitrogen-doped carbon nanofiber aerogel: An efficient metal-free oxygen reduction electrocatalyst for zinc-air battery. Nano Energy 2015, 11, 366–376.

    Article  Google Scholar 

  4. Zhu, C. Z.; Li, H.; Fu, S. F.; Du, D.; Lin, Y. H. Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three-dimensional porous carbon nanostructures. Chem. Soc. Rev. 2016, 45, 517–531.

    Article  Google Scholar 

  5. Kibsgaard, J.; Gorlin, Y.; Chen, Z. B.; Jaramillo, T. F. Meso-structured platinum thin films: Active and stable electrocatalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 2012, 134, 7758–7765.

    Article  Google Scholar 

  6. Sun, S. H.; Zhang, G. X.; Geng, D. S.; Chen, Y. G.; Li, R. Y.; Cai, M.; Sun, X. L. A highly durable platinum nanocatalyst for proton exchange membrane fuel cells: Multiarmed starlike nanowire single crystal. Angew. Chem., Int. Ed. 2011, 50, 422–426.

    Article  Google Scholar 

  7. Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.

    Article  Google Scholar 

  8. Guo, S. J.; Li, D. G.; Zhu, H. Y.; Zhang, S.; Markovic, N. M.; Stamenkovic, V. R.; Sun, S. H. FePt and CoPt nanowires as efficient catalysts for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 3465–3468.

    Article  Google Scholar 

  9. Song, J. H.; Zhu, C. Z.; Fu, S. F.; Song, Y.; Du, D.; Lin, Y. H. Optimization of cobalt/nitrogen embedded carbon nanotubes as an efficient bifunctional oxygen electrode for rechargeable zinc-air batteries. J. Mater. Chem. A 2016, 4, 4864–4870.

    Article  Google Scholar 

  10. Suntivich, J.; Gasteiger, H. A.; Yabuuchi, N.; Nakanishi, H.; Goodenough, J. B.; Shao-Horn, Y. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nat. Chem. 2011, 3, 546–550.

    Article  Google Scholar 

  11. Yasuda, S.; Furuya, A.; Uchibori, Y.; Kim, J.; Murakoshi, K. Iron-nitrogen-doped vertically aligned carbon nanotube electrocatalyst for the oxygen reduction reaction. Adv. Funct. Mater. 2016, 26, 738–744.

    Article  Google Scholar 

  12. Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P. Highperformance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 2011, 332, 443–447.

    Article  Google Scholar 

  13. Fu, S. F.; Zhu, C. Z.; Li, H.; Du, D.; Lin, Y. H. One-step synthesis of cobalt and nitrogen Co-doped carbon nanotubes and their catalytic activity for the oxygen reduction reaction. J. Mater. Chem. A 2015, 3, 12718–12722.

    Article  Google Scholar 

  14. Fu, S. F.; Zhu, C. Z.; Zhou, Y. Z.; Yang, G. H.; Jeon, J. W.; Lemmon, J.; Du, D.; Nune, S. K.; Lin, Y. H. Metal-organic framework derived hierarchically porous nitrogen-doped carbon nanostructures as novel electrocatalyst for oxygen reduction reaction. Electrochim. Acta 2015, 178, 287–293.

    Article  Google Scholar 

  15. Liu, S. W.; Zhang, H. M.; Zhao, Q.; Zhang, X.; Liu, R. R.; Ge, X.; Wang, G. Z.; Zhao, H. J.; Cai, W. P. Metal-organic framework derived nitrogen-doped porous carbon@graphene sandwich-like structured composites as bifunctional electrocatalysts for oxygen reduction and evolution reactions. Carbon 2016, 106, 74–83.

    Article  Google Scholar 

  16. Liu, R. L.; Wu, D. Q.; Feng, X. L.; Müllen, K. Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction. Angew. Chem., Int. Ed. 2010, 122, 2619–2623.

    Article  Google Scholar 

  17. Liang, J.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem., Int. Ed. 2012, 51, 11496–11500.

    Article  Google Scholar 

  18. Zhang, J. T.; Qu, L. T.; Shi, G. Q.; Liu, J. Y.; Chen, J. F.; Dai, L. M. N,P-codoped carbon networks as efficient metalfree bifunctional catalysts for oxygen reduction and hydrogen evolution reactions. Angew. Chem. Int. Ed. 2016, 55, 2230–2234.

    Article  Google Scholar 

  19. Zhou, Y. Z.; Yen, C. H.; Fu, S. F.; Yang, G. H.; Zhu, C. Z.; Du, D.; Wo, P. C.; Cheng, X. N.; Yang, J.; Wai, C. M. et al. One-pot synthesis of B-doped three-dimensional reduced graphene oxide via supercritical fluid for oxygen reduction reaction. Green Chem. 2015, 17, 3552–3560.

    Article  Google Scholar 

  20. Qu, L. T.; Liu, Y.; Baek, J. B.; Dai, L. M. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 2010, 4, 1321–1326.

    Article  Google Scholar 

  21. Zhang, J. T.; Dai, L. M. Heteroatom-doped graphitic carbon catalysts for efficient electrocatalysis of oxygen reduction reaction. ACS Catal. 2015, 5, 7244–7253.

    Article  Google Scholar 

  22. Xia, B. Y.; Yan, Y.; Wang, X.; Lou, X. W. Recent progress on graphene-based hybrid electrocatalysts. Mater. Horiz. 2014, 1, 379–399.

    Article  Google Scholar 

  23. Chen, S.; Duan, J. J.; Jaroniec, M.; Qiao, S. Z. Nitrogen and oxygen dual-doped carbon hydrogel film as a substrate-free electrode for highly efficient oxygen evolution reaction. Adv. Mater. 2014, 26, 2925–2930.

    Article  Google Scholar 

  24. Cheng, Y. W.; Zhang, H. B.; Varanasi, C. V.; Liu, J. Highly efficient oxygen reduction electrocatalysts based on winged carbon nanotubes. Sci. Rep. 2013, 3, 3195.

    Article  Google Scholar 

  25. Salunkhe, R. R.; Tang, J.; Kamachi, Y.; Nakato, T.; Kim, J. H.; Yamauchi, Y. Asymmetric supercapacitors using 3D nanoporous carbon and cobalt oxide electrodes synthesized from a single metal-organic framework. ACS Nano 2015, 9, 6288–6296.

    Article  Google Scholar 

  26. Tang, J.; Liu, J.; Li, C. L.; Li, Y. Q.; Tade, M. O.; Dai, S.; Yamauchi, Y. Synthesis of nitrogen-doped mesoporous carbon spheres with extra-large pores through assembly of diblock copolymer micelles. Angew. Chem., Int. Ed. 2015, 54, 588–593.

    Google Scholar 

  27. Wei, W.; Tao, Y.; Lv, W.; Su, F. Y.; Ke, L.; Li, J.; Wang, D. W.; Li, B. H.; Kang, F. Y.; Yang, Q. H. Unusual high oxygen reduction performance in all-carbon electrocatalysts. Sci. Rep. 2014, 4, 6289.

    Article  Google Scholar 

  28. Song, L. T.; Wu, Z. Y.; Liang, H. W.; Zhou, F.; Yu, Z. Y.; Xu, L.; Pan, Z.; Yu, S. H. Macroscopic-scale synthesis of nitrogen-doped carbon nanofiber aerogels by template-directed hydrothermal carbonization of nitrogen-containing carbohydrates. Nano Energy 2016, 19, 117–127.

    Article  Google Scholar 

  29. Chen, L. F.; Zhang, X. D.; Liang, H. W.; Kong, M. G.; Guan, Q. F.; Chen, P.; Wu, Z. Y.; Yu, S. H. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electode material for supercapacitors. ACS Nano 2012, 6, 7092–7102.

    Article  Google Scholar 

  30. Liang, H. W.; Cao, X.; Zhang, W. J.; Lin, H. T.; Zhou, F.; Chen, L. F.; Yu, S. H. Robust and highly efficient freestanding carbonaceous nanofiber membranes for water purification. Adv. Funct. Mater. 2011, 21, 3851–3858.

    Article  Google Scholar 

  31. Liang, H. W.; Guan, Q. F.; Chen, L. F.; Zhu, Z.; Zhang, W. J.; Yu, S. H. Macroscopic-scale template synthesis of robust carbonaceous nanofiber hydrogels and aerogels and their applications. Angew. Chem., Int. Ed. 2012, 51, 5101–5105.

    Article  Google Scholar 

  32. Kumar, N. A.; Nolan, H.; McEvoy, N.; Rezvani, E.; Doyle, R. L.; Lyons, M. E. G.; Duesberg, G. S. Plasma-assisted simultaneous reduction and nitrogen doping of graphene oxide nanosheets. J. Mater. Chem. A 2013, 1, 4431–4435.

    Article  Google Scholar 

  33. Liu, Z. W.; Fu, X.; Li, M.; Wang, F.; Wang, Q. D.; Kang, G. J.; Peng, F. Novel silicon-doped, silicon and nitrogen-codoped carbon nanomaterials with high activity for the oxygen reduction reaction in alkaline medium. J. Mater. Chem. A 2015, 3, 3289–3293.

    Article  Google Scholar 

  34. Men, B.; Sun, Y. Z.; Li, M. J.; Hu, C. Q.; Zhang, M.; Wang, L. N.; Tang, Y.; Chen, Y. M.; Wan, P. Y.; Pan, J. Q. Hierarchical metal-free nitrogen-doped porous graphene/ carbon composites as an efficient oxygen reduction reaction catalyst. ACS Appl. Mater. Interfaces 2016, 8, 1415–1423.

    Article  Google Scholar 

  35. Mao, S.; Wen, Z. H.; Huang, T. Z.; Hou, Y.; Chen, J. H. High-performance Bi-functional electrocatalysts of 3D crumpled graphene-cobalt oxide nanohybrids for oxygen reduction and evolution reactions. Energy Environ. Sci. 2014, 7, 609–616.

    Article  Google Scholar 

  36. Chung, H. T.; Won, J. H.; Zelenay, P. Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction. Nat. Commun. 2013, 4, 1922.

    Article  Google Scholar 

  37. Xia, B. Y.; Yan, Y.; Li, N.; Wu, H. B.; Lou, X. W.; Wang, X. A metal-organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 2016, 1, 15006.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a start-up fund of Washington State University, USA. The XPS analysis was performed using EMSL, a national scientific user facility sponsored by the Department of Energy’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). We acknowledge Franceschi Microscopy & Image Center at Washington State University for TEM and SEM measurements. PNNL is a multi-program national laboratory operated for DOE by Battelle under Contract DE-AC05-76RL01830.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuehe Lin.

Electronic supplementary material

12274_2016_1371_MOESM1_ESM.pdf

Template-directed synthesis of nitrogen- and sulfur-codoped carbon nanowire aerogels with enhanced electrocatalytic performance for oxygen reduction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, S., Zhu, C., Song, J. et al. Template-directed synthesis of nitrogen- and sulfur-codoped carbon nanowire aerogels with enhanced electrocatalytic performance for oxygen reduction. Nano Res. 10, 1888–1895 (2017). https://doi.org/10.1007/s12274-016-1371-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1371-8

Keywords

Navigation