Skip to main content
Log in

Strain-induced band gap engineering in layered TiS3

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

By combining ab initio calculations and experiments, we demonstrate how the band gap of the transition metal trichalcogenide TiS3 can be modified by inducing tensile or compressive strain. In addition, using our calculations, we predicted that the material would exhibit a transition from a direct to an indirect band gap upon application of a compressive strain in the direction of easy electrical transport. The ability to control the band gap and its nature could have a significant impact on the use of TiS3 for optical applications. We go on to verify our prediction via optical absorption experiments that demonstrate a band gap increase of up to 9% (from 0.99 to 1.08 eV) upon application of tensile stress along the easy transport direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  Google Scholar 

  2. Cahangirov, S.; Topsakal, M.; Aktürk, E.; Şahin, H.; Ciraci, S. Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 2009, 102, 236804.

    Article  Google Scholar 

  3. Yang, K. K.; Chen, Y. P.; D’Agosta, R.; Xie, Y. E.; Zhong, J. X.; Rubio, A. Enhanced thermoelectric properties in hybrid graphene/boron nitride nanoribbons. Phys. Rev. B 2012, 86, 045425.

    Article  Google Scholar 

  4. Cahangirov, S.; Audiffred, M.; Tang, P. Z.; Iacomino, A.; Duan, W. H.; Merino, G.; Rubio, A. Electronic structure of silicene on Ag(111): Strong hybridization effects. Phys. Rev. B 2013, 88, 035432.

    Article  Google Scholar 

  5. Flores, E.; Ares, J. R.; Ferrer, I. J.; Sánchez, C. Synthesis and characterization of a family of layered trichalcogenides for assisted hydrogen photogeneration. Phys. Status Solidi- Rapid Res. Lett. 2016, 10, 802–806.

    Article  Google Scholar 

  6. Ferrer, I. J.; Ares, J. R.; Clamagirand, J. M.; Barawi, M.; Sánchez, C. Optical properties of titanium trisulphide (TiS3) thin films. Thin Solid Films 2013, 535, 398–401.

    Article  Google Scholar 

  7. Island, J. O.; Buscema, M.; Barawi, M.; Clamagirand, J. M.; Ares, J. R.; Sánchez, C.; Ferrer, I. J.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. Ultrahigh photoresponse of few-layer TiS3 nanoribbon transistors. Adv. Opt. Mater. 2014, 2, 641–645.

    Article  Google Scholar 

  8. Island, J. O.; Barawi, M.; Biele, R.; Almazán, A.; Clamagirand, J. M.; Ares, J. R.; Sánchez, C.; van der Zant, H. S. J.; Álvarez, J. V.; D’Agosta, R. et al. TiS3 Transistors with tailored morphology and electrical properties. Adv. Mater. 2015, 27, 2595–2601.

    Article  Google Scholar 

  9. Molina-Mendoza, A. J.; Barawi, M.; Biele, R.; Flores, E.; Ares, J. R.; Sánchez, C.; Rubio-Bollinger, G.; Agraït, N.; D’Agosta, R.; Ferrer, I. J. et al. Electronic bandgap and exciton binding energy of layered semiconductor TiS3. Adv. Electron. Mater. 2015, 1, 1500126.

    Article  Google Scholar 

  10. Wu, J.; Wang, D.; Liu, H.; Lau, W. M.; Liu, L. M. An ab initio study of TiS3: A promising electrode material for rechargeable Li and Na ion batteries. Rsc Adv. 2015, 5, 21455–21463.

    Article  Google Scholar 

  11. Barawi, M.; Flores, E.; Ferrer, I. J.; Ares, J. R.; Sánchez, C. Titanium trisulphide (TiS3) nanoribbons for easy hydrogen photogeneration under visible light. J. Mater. Chem. A 2015, 3, 7959–7965.

    Article  Google Scholar 

  12. Jin, Y. D.; Li, X. X.; Yang, J. L. Single layer of MX3 (M = Ti, Zr; X = S, Se, Te): A new platform for nano-electronics and optics. Phys. Chem. Chem. Phys. 2015, 17, 18665–18669.

    Article  Google Scholar 

  13. Gorlova, I. G.; Zybtsev, S. G.; Pokrovskii, V. Y.; Bolotina, N. B.; Verin, I. A.; Titov, A. N. Nonlinear conductivity of quasi-one-dimensional layered compound TiS3. Phys. B: Condens. Matter 2012, 407, 1707–1710.

    Article  Google Scholar 

  14. Dai, J.; Zeng, X. C. Titanium trisulfide monolayer: Theoretical prediction of a new direct-gap semiconductor with high and anisotropic carrier mobility. Angew. Chem., Int. Ed. 2015, 54, 7572–7576.

    Article  Google Scholar 

  15. Iyikanat, F.; Sahin, H.; Senger, R. T.; Peeters, F. M. Vacancy formation and oxidation characteristics of single layer TiS3. J. Phys. Chem. C 2015, 119, 10709–10715.

    Article  Google Scholar 

  16. Aierken, Y.; Çakır, D.; Peeters, F. M. Strain enhancement of acoustic phonon limited mobility in monolayer TiS3. Phys. Chem. Chem. Phys. 2016, 18, 14434–14441.

    Article  Google Scholar 

  17. Kang, J.; Wang, L. W. Robust band gap of TiS3 nanofilms. Phys. Chem. Chem. Phys. 2016, 18, 14805–14809.

    Article  Google Scholar 

  18. Li, M.; Dai, J.; Zeng, X. C. Tuning the electronic properties of transition-metal trichalcogenides via tensile strain. Nanoscale 2015, 7, 15385–15391.

    Article  Google Scholar 

  19. Kang, J.; Sahin, H.; Ozaydin, H. D.; Senger, R. T.; Peeters, F. M. TiS3 nanoribbons: Width-independent band gap and strain-tunable electronic properties. Phys. Rev. B 2015, 92, 75413.

    Article  Google Scholar 

  20. Kang, J.; Sahin, H.; Peeters, F. M. Mechanical properties of monolayer sulphides: A comparative study between MoS2, HfS2 and TiS3. Phys. Chem. Chem. Phys. 2015, 17, 27742–27749.

    Article  Google Scholar 

  21. Li, X. R.; Dai, Y.; Li, M. M.; Wei, W.; Huang, B. B. Stable Si-based pentagonal monolayers: High carrier mobilities and applications in photocatalytic water splitting. J. Mater. Chem. A 2015, 3, 24055–24063.

    Article  Google Scholar 

  22. Li, X. R.; Dai, Y.; Ma, Y. D.; Liu, Q. Q.; Huang, B. B. Intriguing electronic properties of two-dimensional MoS2/ TM2 CO2 (TM = Ti, Zr, or Hf) hetero-bilayers: Type-II semiconductors with tunable band gaps. Nanotechnology 2015, 26, 135703.

    Article  Google Scholar 

  23. Yun, W. S.; Han, S. W.; Hong, S. C.; Kim, I. G.; Lee, J. D. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M= Mo, W; X=S, Se, Te). Phys. Rev. B 2012, 85, 033305.

    Article  Google Scholar 

  24. Conley, H. J.; Wang, B.; Ziegler, J. I.; Haglund, R. F., Jr.; Pantelides, S. T.; Bolotin, K. I. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 2013, 13, 3626–3630.

    Article  Google Scholar 

  25. Wang, C.; Xia, Q. L.; Nie, Y. Z.; Rahman, M.; Guo, G. H. Strain engineering band gap, effective mass and anisotropic dirac-like cone in monolayer arsenene. AIP Adv. 2016, 6, 035204.

    Article  Google Scholar 

  26. Island, J. O.; Molina-Mendoza, A. J.; Barawi, M.; Biele, R.; Flores, E.; Clamagirand, J. M.; Ares, J. R.; Sanchez, C.; van der Zant, H. S. J.; D’Agosta, R. et al. Electronics and optoelectronics of quasi-one dimensional layered transition metal trichalcogenides. 2D Materials 2017, 4, 022003.

    Article  Google Scholar 

  27. Roldán, R.; Castellanos-Gomez, A.; Cappelluti, E.; Guinea, F. Strain engineering in semiconducting two-dimensional crystals. J. Phys. Condens. Matter 2015, 27, 313201.

    Article  Google Scholar 

  28. Castellanos-Gomez, A.; Roldán, R.; Cappelluti, E.; Buscema, M.; Guinea, F.; van der Zant, H. S. J.; Steele, G. A. Local strain engineering in atomically thin MoS2. Nano Lett. 2013, 13, 5361–5366.

    Article  Google Scholar 

  29. Yang, S. X.; Wang, C.; Sahin, H.; Chen, H.; Li, Y.; Li, S. S.; Suslu, A.; Peeters, F. M.; Liu, Q.; Li, J.B. et al. Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering. Nano Lett. 2015, 15, 1660–1666.

    Article  Google Scholar 

  30. Mei, H. X.; Landis, C. M.; Huang, R. Concomitant wrinkling and buckle-delamination of elastic thin films on compliant substrates. Mech. Mater. 2011, 43, 627–642.

    Article  Google Scholar 

  31. Vella, D.; Bico, J.; Boudaoud, A.; Roman, B.; Reis, P. M. The macroscopic delamination of thin films from elastic substrates. Proc. Natl. Acad. Sci. USA 2009, 106, 10901–10906.

    Article  Google Scholar 

  32. Castellanos-Gomez, A.; Quereda, J.; van der Meulen, H. P.; Agraït, N.; Rubio-Bollinger, G. Spatially resolved optical absorption spectroscopy of single- and few-layer MoS2 by hyperspectral imaging. Nanotechnology 2016, 27, 115705.

    Article  Google Scholar 

  33. Guan, J.; Song, W. S.; Yang, L.; Tománek, D. Straincontrolled fundamental gap and structure of bulk black phosphorus. Phys. Rev. B 2016, 94, 045414.

    Article  Google Scholar 

  34. Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502.

    Article  Google Scholar 

  35. Hartwigsen, C.; Goedecker, S.; Hutter, J. Relativistic separable dual-space gaussian pseudopotentials from H to Rn. Phys. Rev. B 1998, 58, 3641–3662.

    Article  Google Scholar 

  36. Goedecker, S.; Teter, M.; Hutter, J. Separable dual-space gaussian pseudopotentials. Phys. Rev. B 1996, 54, 1703–1710.

    Article  Google Scholar 

  37. Furuseth, S.; Brattas, L.; Kjejshus, A. On the crystal structures of TiS3, ZrS3, ZrSe3, ZrTe3, HfS3, and HfSe3. Acta Chem. Scand. 1975, 29, 623–631.

    Article  Google Scholar 

Download references

Acknowledgements

R. B. and R. D’A. acknowledge financial support by the projects DYN-XC-TRANS (No. FIS2013-43130-P), SELECT-DFT (No. FIS2016-79464-P), the Grupo Consolidado UPV/EHU del Gobierno Vasco (No. IT578-13), and NANOTherm (No. CSD2010-00044) of the Ministerio de Economia y Competitividad (MINECO). R. B. acknowledges the financial support of Ministerio de Educacion, Cultura y Deporte (No. FPU12/01576). R. D’A. is grateful to the Physics Department of King’s College London for its hospitality during the completion of this work supported by the Grant No. MV- 2015-1-17 of the Diputacion Foral de Guipuzkoa. A.C.-G. acknowledges financial support from the European Commission under the Graphene Flagship, contract CNECTICT-604391 and from the MINECO (Ramón y Cajal 2014 program RYC-2014- 01406 and MAT2014-58399-JIN) and from the Comunidad de Madrid (MAD2D-CM Program (S2013/MIT-3007)). G. R.-B. acknowledges financial support from the Grant No. MAT2014-57915-R from the MINECO. The MIRE group acknowledge financial support from MINECO (No. MAT2015-65203R) and E. F. thanks the Mexican National Council for Science and Technology (CONACyT) for providing a PhD. Grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Robert Biele, Andres Castellanos-Gomez or Roberto D’Agosta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biele, R., Flores, E., Ares, J.R. et al. Strain-induced band gap engineering in layered TiS3 . Nano Res. 11, 225–232 (2018). https://doi.org/10.1007/s12274-017-1622-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1622-3

Keywords

Navigation