Skip to main content
Log in

Nano-fried-eggs: Structural, optical, and magnetic characterization of physically prepared iron-silver nanoparticles

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The prospect of combining both magnetic and plasmonic properties in a single nanoparticle promises both valuable insights on the properties of such systems from a fundamental viewpoint and numerous possibilities for technological applications. However, the combination of two of the most prominent metallic candidates—iron and silver—has presented numerous experimental difficulties because their thermodynamic properties impede miscibility and even coalescence. Herein, we present the thorough characterization of physically prepared Fe50Ag50 nanoparticles embedded in carbon and silica matrices via electron microscopy, optical spectroscopy, magnetometry and synchrotron-based X-ray spectroscopy. Iron and silver segregate completely into structures resembling fried eggs, with a nearly spherical, crystallized silver part surrounded by an amorphous structure of iron carbide or oxide, depending on the environment of the particles. Consequently, the particles exhibit both plasmonic absorption corresponding to the silver nanospheres in an oxide environment and a reduced but measurable magnetic response. The suitability of such nanoparticles for technological applications is discussed from the viewpoint of their high chemical reactivity with their environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kreibig, U.; Vollmer, M. Optical Properties of Metal Clusters. Springer Series in Materials Science; Springer: Berlin, 1995.

    Book  Google Scholar 

  2. Coey, J. M. D. Magnetism and Magnetic Materials; Cambridge University Press: Cambridge, 2010.

    Book  Google Scholar 

  3. Alloyeau, D.; Mottet, C.; Ricolleau, C. Nanoalloys: Synthesis, Structure and Properties; Springer-Verlag: London, 2012.

    Book  Google Scholar 

  4. Calvo, F. Nanoalloys: From Fundamentals to Emergent Applications; Elsevier: USA, 2013.

    Google Scholar 

  5. Ferrando, R. Structure and properties of nanoalloys. In Frontiers of Nanoscience; Elsevier: Amsterdam, 2016; pp 2–337.

    Google Scholar 

  6. García, S.; Zhang, L.; Piburn, G. W.; Henkelman, G.; Humphrey, S. M. Microwave synthesis of classically immiscible rhodium–silver and rhodium–gold alloy nanoparticles: Highly active hydrogenation catalysts. ACS Nano 2014, 8, 11512–11521.

    Article  Google Scholar 

  7. Sotiriou, G. A.; Visbal-Onufrak, M. A.; Teleki, A.; Juan, E. J.; Hirt, A. M.; Pratsinis, S. E.; Rinaldi, C. Thermal energy dissipation by SiO2-coated plasmonic-superparamagnetic nanoparticles in alternating magnetic fields. Chem. Mater. 2013, 25, 4603–4612.

    Article  Google Scholar 

  8. Armelles, G.; Cebollada, A.; García-Martín, A.; González, M. U. Magnetoplasmonics: Combining magnetic and plasmonic functionalities. Adv. Opt. Mater. 2013, 1, 10–35.

    Article  Google Scholar 

  9. Peng, S.; Lei, C. H.; Ren, Y.; Cook, R. E.; Sun, Y. G. Plasmonic/magnetic bifunctional nanoparticles. Angew. Chem., Int. Ed. 2011, 50, 3158–3163.

    Article  Google Scholar 

  10. Hao, R.; Xing, R. J.; Xu, Z. C.; Hou, Y. L.; Gao, S.; Sun, S. H. Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv. Mater. 2010, 22, 2729–2742.

    Article  Google Scholar 

  11. Wang, J. F.; Wu, X. Z.; Wang, C. W.; Shao, N. S.; Dong, P. T.; Xiao, R.; Wang, S. Q. Magnetically assisted surfaceenhanced Raman spectroscopy for the detection of Staphylococcus aureus based on aptamer recognition. ACS Appl. Mater. Interfaces 2015, 37, 20919–20929.

    Article  Google Scholar 

  12. Bogani, L.; Cavigli, L.; de Julián Fernández, C.; Mazzoldi, P.; Mattei, G.; Gurioli, M.; Dressel, M.; Gatteschi, D. Photocoercivity of nano-stabilized Au:Fe superparamagnetic nanoparticles. Adv. Mater. 2010, 22, 4054–4058.

    Article  Google Scholar 

  13. Lu, L. Y.; Zhang, W. T.; Wang, D.; Xu, X. G.; Miao, J.; Jiang, Y. Fe@Ag core–shell nanoparticles with both sensitive plasmonic properties and tunable magnetism. Mater. Lett. 2010, 64, 1732–1734.

    Article  Google Scholar 

  14. Moscoso-Londoño, O.; Muraca, D.; Tancredi, P.; Cosio-Castañeda, C.; Pirota, K. R.; Socolovsky, L. M. Physicochemical studies of complex silver–magnetite nanoheterodimers with controlled morphology. J. Phys. Chem. C 2014, 118, 13168–13176.

    Article  Google Scholar 

  15. Mahmoudi, M.; Serpooshan, V. Silver-coated engineered magnetic nanoparticles are promising for the success in the fight against antibacterial resistance threat. ACS Nano 2012, 6, 2656–2664.

    Article  Google Scholar 

  16. Lin, A. Y.; Young, J. K.; Nixon, A. V.; Drezek, R. A. Encapsulated Fe3O4/Ag complexed cores in hollow gold nanoshells for enhanced theranostic magnetic resonance imaging and photothermal therapy. Small 2014, 10, 3246–3251.

    Article  Google Scholar 

  17. Han, X. X.; Schmidt, A. M.; Marten, G.; Fischer, A.; Weidinger, I. M.; Hildebrandt, P. Magnetic silver hybrid nanoparticles for surface-enhanced resonance Raman spectroscopic detection and decontamination of small toxic molecules. ACS Nano 2013, 7, 3212–3220.

    Article  Google Scholar 

  18. Wang, H.; Shen, J.; Li, Y. Y.; Wei, Z. Y.; Cao, G. X.; Gai, Z.; Hong, K. L.; Banerjee, P.; Zhou, S. Q. Porous carbon protected magnetite and silver hybrid nanoparticles: Morphological control, recyclable catalysts, and multicolor cell imaging. ACS Appl. Mater. Interfaces 2013, 5, 9446–9453.

    Article  Google Scholar 

  19. Andreazza, P.; Pierron-Bohnes, V.; Tournus, F.; Andreazza-Vignolle, C.; Dupuis, V. Structure and order in cobalt/ platinum-type nanoalloys: From thin films to supported clusters. Surf. Sci. Rep. 2015, 70, 188–258.

    Article  Google Scholar 

  20. Swartzendruber, L. J. The Ag–Fe (silver–iron) system. Bull. Alloy Phase Diag. 1984, 5, 560–564.

    Article  Google Scholar 

  21. Kataoka, N.; Sumiyama, K.; Nakamura, Y. Nonequilibrium crystalline Fe-Ag alloys vapour-quenched on liquid-nitrogencooled substrates. J. Phys. F: Met. Phys. 1988, 18, 1049–1056.

    Article  Google Scholar 

  22. Wan, H.; Tsoukatos, A.; Hadjipanayis, G. C.; Li, Z. G.; Liu, J. Direct evidence of phase separation in as-deposited Fe(Co)-Ag films with giant magnetoresistance. Phys. Rev. B 1994, 49, 1524–1527.

    Article  Google Scholar 

  23. Sakurai, M.; Makhlouf, S. A.; Sumiyama, K.; Wakoh, K.; Suzuki, K. Extended X-ray absorption fine structure study on local structure around Fe atoms in Fe/Ag granular materials. Jpn. J. Appl. Phys. 1994, 33, 4090.

    Article  Google Scholar 

  24. Yaws, C. L. Chemical Properties Handbook: Physical, Thermodynamics, Environmental, Transport, Safety, and Health Related Properties for Organic and Inorganic Chemicals; McGraw-Hill: New York, 1999.

    Google Scholar 

  25. Ferrando, R.; Jellinek, J.; Johnston, R. L. Nanoalloys: From theory to applications of alloy clusters and nanoparticles. Chem. Rev. 2008, 108, 845–910.

    Article  Google Scholar 

  26. Pellarin, M.; Issa, I.; Langlois, C.; Lebeault, M.-A.; Ramade, J.; Lermé, J.; Broyer, M.; Cottancin, E. Plasmon spectroscopy and chemical structure of small bimetallic Cu(1–x)Agx clusters. J. Phys. Chem. C 2015, 119, 5002–5012.

    Article  Google Scholar 

  27. Carroll, K. J.; Hudgins, D. M.; Spurgeon, S.; Kemner, K. M.; Mishra, B.; Boyanov, M. I.; Brown, L. W., III.; Taheri, M. L.; Carpenter, E. E. One-pot aqueous synthesis of Fe and Ag core/shell nanoparticles. Chem. Mater. 2010, 22, 6291–6269.

    Article  Google Scholar 

  28. Wang, L.; Yang, K.; Clavero, C.; Nelson, A. J.; Carroll, K. J.; Carpenter, E. E.; Lukaszew, R. A. Localized surface plasmon resonance enhanced magneto-optical activity in core-shell Fe–Ag nanoparticles. J. Appl. Phys. 2010, 107, 09B303.

    Google Scholar 

  29. Luo, S.; Yang, S. G.; Wang, X. D.; Sun, C. Reductive degradation of tetrabromobisphenol A over iron–silver bimetallic nanoparticles under ultrasound radiation. Chemosphere 2010, 79, 672–678.

    Article  Google Scholar 

  30. Marková, Z.; Šišková, K. M.; Filip, J.; Cuda, J.; Kolár, M.; Šafárová, K.; Medrík, I.; Zboril, R. Air stable magnetic bimetallic Fe–Ag nanoparticles for advanced antimicrobial treatment and phosphorus removal. Environ. Sci. Technol. 2013, 47, 5285–5293.

    Article  Google Scholar 

  31. Amendola, V.; Scaramuzza, S.; Agnoli, S.; Granozzi, G.; Meneghetti, M.; Campo, G.; Bonanni, V.; Pineider, F.; Sangregorio, C.; Ghigna, P. et al. Laser generation of iron-doped silver nanotruffles with magnetic and plasmonic properties. Nano Res. 2015, 8, 4007–4023.

    Article  Google Scholar 

  32. Scaramuzza, S.; Badocco, D.; Pastore, P.; Coral, D. F.; Fernández van Raap, M. B.; Amendola, V. Magnetically assembled SERS substrates composed of iron-silver nanoparticles obtained by laser ablation in liquid. ChemPhysChem 2017, 18, 1026–1034.

    Article  Google Scholar 

  33. Andrews, M. P.; O’Brien, S. C. Gas-phase “molecular alloys” of bulk immiscible elements: Iron-silver (FexAgy). J. Phys. Chem. 1992, 96, 8233–8241.

    Article  Google Scholar 

  34. Perez, A.; Dupuis, V.; Tuaillon-Combes, J.; Bardotti, L.; Prevel, B.; Bernstein, E.; Mélinon, P.; Favre, L.; Hannour, A.; Jamet, M. Functionalized cluster-assembled magnetic nanostructures for applications to high integration-density devices. Adv. Eng. Mater. 2005, 7, 475–485.

    Article  Google Scholar 

  35. Rousset, J. L.; Cadrot, A. M.; Cadete Santos Aires, F. J.; Renouprez, A.; Mélinon, P.; Perez, A.; Pellarin, M.; Vialle, J. L.; Broyer, M. Study of bimetallic Pd–Pt clusters in both free and supported phases. J. Chem. Phys. 1995, 102, 8574–8585.

    Article  Google Scholar 

  36. Tournus, F.; Blanc, N.; Tamion, A.; Hillenkamp, M.; Dupuis, V. Dispersion of magnetic anisotropy in size-selected CoPt clusters. Phys. Rev. B 2010, 81, 220405.

    Article  Google Scholar 

  37. Tournus, F.; Blanc, N.; Tamion, A.; Dupuis, V.; Epicier, T. Coalescence-free L10 ordering of embedded CoPt nanoparticles. J. Appl. Phys. 2011, 109, 07B722.

    Article  Google Scholar 

  38. Tamion, A.; Hillenkamp, M.; Hillion, A.; Tournus, F.; Tuaillon-Combes, J.; Boisron, O.; Zafeiratos, S.; Dupuis, V. Demixing in cobalt clusters embedded in a carbon matrix evidenced by magnetic measurements. J. Appl. Phys. 2011, 110, 063904.

    Article  Google Scholar 

  39. Hillion, A.; Cavallin, A.; Vlaic, S.; Tamion, A.; Tournus, F.; Khadra, G.; Dreiser, J.; Piamonteze, C.; Nolting, F.; Rusponi, S. et al. Low temperature ferromagnetism in chemically ordered FeRh nanocrystals. Phys. Rev. Lett. 2013, 110, 087207.

    Article  Google Scholar 

  40. Dupuis, V.; Khadra, G.; Linas, S.; Hillion, A.; Gragnaniello, L.; Tamion, A.; Tuaillon-Combes, J.; Bardotti, L.; Tournus, F.; Otero, E. et al. Magnetic moments in chemically ordered mass-selected CoPt and FePt clusters. J. Magn. Magn. Mater. 2015, 383, 73–77.

    Article  Google Scholar 

  41. Dupuis, V.; Robert, A.; Hillion, A.; Khadra, G.; Blanc, N.; Le Roy, D.; Tournus, F.; Albin, C.; Boisron, O.; Tamion, A. Cubic chemically ordered FeRh and FeCo nanomagnets prepared by mass-selected low-energy cluster-beam deposition: A comparative study. Beilstein J. Nanotechnol. 2016, 7, 1850–1860.

    Article  Google Scholar 

  42. Navrotsky, A.; Ma, C. C.; Lilova, K.; Birkner, N. Nanophase transition metal oxides show large thermodynamically driven shifts in oxidation-reduction equilibria. Science 2010, 330, 199–201.

    Article  Google Scholar 

  43. Pierre Stadelmann. JEMS Electron Microscopy Simulation Software. https://doi.org/cime.epfl.ch/research/jems (accessed Jan 24, 2018).

    Google Scholar 

  44. Hillenkamp, M.; Di Domenicantonio, G.; Eugster, O.; Félix, C. Instability of Ag nanoparticles in SiO2 at ambient conditions. Nanotechnology 2007, 18, 015702.

    Article  Google Scholar 

  45. Cottancin, E.; Broyer, M.; Lermé, J.; Pellarin, M. Optical properties of metal clusters and nanoparticles. In Handbook of Nanophysics: Nanoelectronics and Nanophotonics; Sattler, K. D., Ed.; CRC Press: Boca Raton, FL,USA, 2011.

    Google Scholar 

  46. Chen, C. T.; Idzerda, Y. U.; Lin, H.-J.; Smith, N. V.; Meigs, G.; Chaban, E.; Ho, G. H.; Pellegrin, E.; Sette, F. Experimental confirmation of the X-ray magnetic circular dichroism sum rules for iron and cobalt. Phys. Rev. Lett. 1995, 75, 152–155.

    Article  Google Scholar 

  47. Šipr, O.; Ebert, H. Theoretical Fe L2,3ˉ and K-edge X-ray magnetic circular dichroism spectra of free iron clusters. Phys. Rev. B 2005, 72, 134406.

    Article  Google Scholar 

  48. Pellegrin, E.; Hagelstein, M.; Doyle, S.; Moser, H. O.; Fuchs, J.; Vollath, D.; Schuppler, S.; James, M. A.; Saxena, S. S.; Niesen, L. et al. Characterization of nanocrystalline γ-Fe2O3 with synchrotron radiation techniques. Phys. Status Solidi (b) 1999, 215, 797–801.

    Article  Google Scholar 

  49. Furlan, A.; Jansson, U.; Lu, J.; Hultman, L.; Magnuson, M. Structure and bonding in amorphous iron carbide thin films. J. Phys.: Condens. Matter 2015, 27, 045002.

    Google Scholar 

  50. Okamoto, H. The C-Fe (carbon-iron) system. J. Phase Equil. 1992, 13, 543–565.

    Article  Google Scholar 

  51. Hofer, L. J. E.; Cohn, E. M. Saturation magnetizations of iron carbides. J. Am. Chem. Soc. 1959, 81, 1576–1582.

    Article  Google Scholar 

  52. Xu, X. S.; Yin, S. Y.; Moro, R.; Liang, A.; Bowlan, J.; de Heer, W. A. Metastability of free cobalt and iron clusters: A possible precursor to bulk ferromagnetism. Phys. Rev. Lett. 2011, 107, 057203.

    Article  Google Scholar 

  53. Balan, A.; Derlet, P. M.; Rodríguez, A. F.; Bansmann, J.; Yanes, R.; Nowak, U.; Kleibert, A.; Nolting, F. Direct observation of magnetic metastability in individual iron nanoparticles. Phys. Rev. Lett. 2014, 112, 107201.

    Article  Google Scholar 

  54. Tamion, A.; Hillenkamp, M.; Tournus, F.; Bonet, E.; Dupuis, V. Accurate determination of the magnetic anisotropy in cluster-assembled nanostructures. Appl. Phys. Lett. 2009, 95, 062503.

    Article  Google Scholar 

  55. Hillion, A.; Tamion, A.; Tournus, F.; Gaier, O.; Bonet, E.; Albin, C.; Dupuis, V. Advanced magnetic anisotropy determination through isothermal remanent magnetization of nanoparticles. Phys. Rev. B 2013, 88, 094419.

    Article  Google Scholar 

  56. Oyarzún, S.; Tamion, A.; Tournus, F.; Dupuis, V.; Hillenkamp, M. Size effects in the magnetic anisotropy of embedded cobalt nanoparticles: From shape to surface. Sci. Rep. 2015, 5, 14749.

    Article  Google Scholar 

  57. Dupuis, V.; Khadra, G.; Hillion, A.; Tamion, A.; Tuaillon-Combes, J.; Bardotti, L.; Tournus, F. Intrinsic magnetic properties of bimetallic nanoparticles elaborated by cluster beam deposition. Phys. Chem. Chem. Phys. 2015, 17, 27996.

    Article  Google Scholar 

  58. Tao, F.; Grass, M. E.; Zhang, Y. W.; Butcher, D. R.; Renzas, J. R.; Liu, Z.; Chung, J. Y.; Mun, B. S.; Salmeron, M.; Somorjai, G. A. Reaction-driven restructuring of Rh-Pd and Pt-Pd core-shell nanoparticles. Science 2008, 322, 932–934.

    Article  Google Scholar 

  59. Li, C. R.; Lu, N. P.; Xu, Q.; Mei, J.; Dong, W. J.; Fu, J. L.; Cao, Z. X. Decahedral and icosahedral twin crystals of silver: Formation and morphology evolution. J. Cryst. Growth 2011, 319, 88–95.

    Article  Google Scholar 

  60. Volk, A.; Thaler, P.; Koch, M.; Fisslthaler, E.; Grogger, W.; Ernst, W. E. High resolution electron microscopy of Agclusters in crystalline and non-crystalline morphologies grown inside superfluid helium nanodroplets. J. Chem. Phys. 2013, 138, 214312.

    Article  Google Scholar 

  61. Barke, I.; Hartmann, H.; Rupp, D.; Fluckiger, L.; Sauppe, M.; Adolph, M.; Schorb, S.; Bostedt, C.; Treusch, R.; Peltz, C. et al. The 3D-architecture of individual free silver nanoparticles captured by X-ray scattering. Nat. Commun. 2015, 6, 6187.

    Article  Google Scholar 

  62. Mukherjee, P.; Zhang, Y.; Kramer, M. J.; Lewis, L. H.; Shield, J. E. L10 structure formation in slow-cooled Fe–Au nanoclusters. Appl. Phys. Lett. 2012, 100, 211911.

    Article  Google Scholar 

  63. Mukherjee, P.; Manchanda, P.; Kumar, P.; Zhou, L.; Kramer, M. J.; Kashyap, A.; Skomski, R.; Sellmyer, D.; Shield, J. E. Size-induced chemical and magnetic ordering in individual Fe–Au nanoparticles. ACS Nano 2014, 8, 8113–8120.

    Article  Google Scholar 

  64. Binns, C.; Qureshi, M. T.; Peddis, D.; Baker, S. H.; Howes, P. B.; Boatwright, A.; Cavill, S. A.; Dhesi, S. S.; Lari, L.; Kröger, R. et al. Exchange bias in Fe@Cr core–shell nanoparticles. Nano Lett. 2013, 13, 3334–3339.

    Article  Google Scholar 

Download references

Acknowledgements

Financial support through a “Chaire Française dans l’État de São Paulo” and from the São Paulo Research Foundation (FAPESP, 2013/14262-7 and 16/12807-4) for M. H., from the Science Without Borders “Special Visiting Scientist” program, contract number 88881.030488/2013-01, and from the Region Rhône-Alpes in the frame of an ARC (Academic Research Community) doctoral grant for J. R. is gratefully acknowledged. This work was performed using the Lyon Cluster Research Platform PLYRA, the Lyon Center for Microscopy CLYM, the Lyon Center for Magnetometry CML and at the Brazilian Nanotechnology National Laboratory (LNNano). The Laboratório Nacional de Luz Síncrotron (LNLS, Campinas, Brazil) is thanked for the use of the PGM beamline. We gratefully acknowledge technical support from C. Albin, C. Clavier and N. Blanchard in Lyon and from A. de Siervo, J. Bettini and J. Cezar in Campinas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Hillenkamp.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramade, J., Troc, N., Boisron, O. et al. Nano-fried-eggs: Structural, optical, and magnetic characterization of physically prepared iron-silver nanoparticles. Nano Res. 11, 6074–6085 (2018). https://doi.org/10.1007/s12274-018-2125-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2125-6

Keywords

Navigation