Skip to main content
Log in

Exploring the synthesis conditions to control the morphology of gold-iron oxide heterostructures

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Gold–iron oxide nano-heterostructures with a clear and well-defined morphology were prepared via a seed-assisted method. The synthesis process and the events of heterogeneous nucleation during the decomposition of the iron precursor were carefully studied in order to understand the mechanism of the reaction and to tailor the architecture of the fabricated heterostructures. When employing Au seeds of 3 and 5 nm, nanoparticles with a dimer-like morphology were produced due to the occurrence of a single iron oxide nucleation event. Otherwise, multi-nucleation events could be favored by two mechanisms: (i) by the incorporation of a reducing agent and the slowing down of the heating protocol, leading to a core–shell system; (ii) by the increase of the Au seed size to 8 nm, leading to a flower-like system. Further increase of the Au seed size to 12 nm using similar synthesis conditions promotes the homogeneous nucleation and growth of the iron oxide phase, without formation of heterostructures. An in-depth study was performed on the gold–iron oxide heterostructures to confirm the epitaxial growth of the oxide domain over the Au seed and to analyze the elemental distribution of the components within the heterostructures. Finally, it was found that the modification of the plasmonic properties of the Au nanoparticles are strongly influenced by the architecture of the heterostructure, with a more pronounced damping effect for the systems produced after multi-nucleation events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carbone, L.; Cozzoli, P. D. Colloidal heterostructured nanocrystals: Synthesis and growth mechanisms. Nano Today 2010, 5, 449–493.

    Article  Google Scholar 

  2. Costi, R.; Saunders, A. E.; Banin, U. Colloidal hybrid nanostructures: A new type of functional materials. Angew. Chem., Int. Ed. 2010, 49, 4878–4897.

    Article  Google Scholar 

  3. Buck, M. R.; Bondi, J. F.; Schaak, R. E. A total-synthesis framework for the construction of high-order colloidal hybrid nanoparticles. Nat. Chem. 2012, 4, 37–44.

    Article  Google Scholar 

  4. Ye, X. C.; Reifsnyder Hickey, D.; Fei, J. Y.; Diroll, B. T.; Paik, T.; Chen, J.; Murray, C. B. Seeded growth of metal-doped plasmonic oxide heterodimer nanocrystals and their chemical transformation. J. Am. Chem. Soc. 2014, 136, 5106–5115.

    Article  Google Scholar 

  5. Schick, I.; Gehrig, D.; Montigny, M.; Balke, B.; Panthöfer, M.; Henkel, A.; Laquai, F.; Tremel, W. Effect of charge transfer in magnetic-plasmonic Au@MOx (M = Mn, Fe) heterodimers on the kinetics of nanocrystal formation. Chem. Mater. 2015, 27, 4877–4884.

    Article  Google Scholar 

  6. Xia, Y. N.; Gilroy, K. D.; Peng, H. C.; Xia, X. H. Seed-mediated growth of colloidal metal nanocrystals. Angew. Chem., Int. Ed. 2017, 56, 60–95.

    Article  Google Scholar 

  7. LaMer, V. K.; Dinegar, R. H. Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 1950, 72, 4847–4854.

    Article  Google Scholar 

  8. Sun, Y. G. Interfaced heterogeneous nanodimers. Natl. Sci. Rev. 2015, 2, 329–348.

    Article  Google Scholar 

  9. Peng, Z. M.; Yang, H. Designer platinum nanoparticles: Control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today 2009, 4, 143–164.

    Article  Google Scholar 

  10. Zeng, J.; Wang, X. P.; Hou, J. G. Colloidal hybrid nanocrystals: Synthesis, properties, and perspectives. In Nanocrystal. Masuda, Y., Ed.; InTech: Rijeka, 2011.

    Google Scholar 

  11. Choi, S. H.; Na, H. B.; Park, Y. I.; An, K.; Kwon, S. G.; Jang, Y.; Park, M. H.; Moon, J.; Son, J. S.; Song, I. C. et al. Simple and generalized synthesis of oxide-metal heterostructured nanoparticles and their applications in multimodal biomedical probes. J. Am. Chem. Soc. 2008, 130, 15573–15580.

    Article  Google Scholar 

  12. Xu, C. J.; Xie, J.; Ho, D.; Wang, C.; Kohler, N.; Walsh, E. G.; Morgan, J. R.; Chin, Y. E.; Sun, S. H. Au-Fe3O4 dumbbell nanoparticles as dual-functional probes. Angew. Chem., Int. Ed. 2008, 47, 173–176.

    Article  Google Scholar 

  13. Wang, C.; Yin, H. F.; Dai, S.; Sun, S. H. A general approach to noble metal–metal oxide dumbbell nanoparticles and their catalytic application for Co oxidation. Chem. Mater. 2010, 22, 3277–3282.

    Article  Google Scholar 

  14. Wu, B. H.; Zhang, H.; Chen, C.; Lin, S. C.; Zheng, N. F. Interfacial activation of catalytically inert Au (6.7 nm)-Fe3O4 dumbbell nanoparticles for CO oxidation. Nano Res. 2010, 2, 975–983.

    Article  Google Scholar 

  15. Gan, Z. B.; Zhao, A. W.; Zhang, M. F.; Wang, D. P.; Guo, H. Y.; Tao, W. Y.; Gao, Q.; Mao, R. R.; Liu, E. H. Fabrication and magnetic-induced aggregation of Fe3O4–noble metal composites for superior SERS performances. J. Nanopart. Res. 2013, 15, 1954.

    Article  Google Scholar 

  16. Orlando, T.; Capozzi, A.; Umut, E.; Bordonali, L.; Mariani, M.; Galinetto, P.; Pineider, F.; Innocenti, C.; Masala, P.; Tabak, F. et al. Spin dynamics in hybrid iron oxide–gold nanostructures. J. Phys. Chem. C 2015, 119, 1224–1233.

    Article  Google Scholar 

  17. Velasco, V.; Muñoz, L.; Mazarío, E.; Menéndez, N.; Herrasti, P.; Hernando, A.; Crespo, P. Chemically synthesized Au–Fe3O4 nanostructures with controlled optical and magnetic properties. J. Phys. D Appl. Phys. 2015, 48, 035502.

    Article  Google Scholar 

  18. Costa, L. S. D.; Zanchet, D. Pretreatment impact on the morphology and the catalytic performance of hybrid heterodimers nanoparticles applied to CO oxidation. Catal. Today 2017, 282, 151–158.

    Article  Google Scholar 

  19. Tomitaka, A.; Arami, H.; Raymond, A.; Yndart, A.; Kaushik, A.; Jayant, R. D.; Takemura, Y.; Cai, Y.; Toborek, M.; Nair, M. Development of magneto-plasmonic nanoparticles for multimodal image-guided therapy to the brain. Nanoscale 2017, 9, 764–773.

    Article  Google Scholar 

  20. Kakwere, H.; Materia, M. E.; Curcio, A.; Prato, M.; Sathya, A.; Nitti, S.; Pellegrino, T. Dually responsive gold-iron oxide heterodimers: Merging stimuli-responsive surface properties with intrinsic inorganic material features. Nanoscale 2018, 10, 3930–3944.

    Article  Google Scholar 

  21. Nguyen, T. T.; Mammeri, F.; Ammar, S. Iron oxide and gold based magnetoplasmonic nanostructures for medical applications: A review. Nanomaterials (Basel) 2018, 8, 149.

    Article  Google Scholar 

  22. Lin, F. H.; Chen, W.; Liao, Y. H.; Doong, R. A.; Li, Y. D. Effective approach for the synthesis of monodisperse magnetic nanocrystals and M-Fe3O4 (M = Ag, Au, Pt, Pd) heterostructures. Nano Res. 2011, 4, 1223–1232.

    Article  Google Scholar 

  23. Umut, E.; Pineider, F.; Arosio, P.; Sangregorio, C.; Corti, M.; Tabak, F.; Lascialfari, A.; Ghigna, P. Magnetic, optical and relaxometric properties of organically coated gold–magnetite (Au–Fe3O4) hybrid nanoparticles for potential use in biomedical applications. J. Magn. Magn. Mater. 2012, 324, 2373–2379.

    Article  Google Scholar 

  24. Sarveena; Muraca, D.; Zélis, P. M.; Javed, Y.; Ahmad, N.; Vargas, J. M.; Moscoso-Londoño, O.; Knobel, M.; Singh, M.; Sharma, S. K. Surface and interface interplay on the oxidizing temperature of iron oxide and Au-iron oxide core-shell. RSC Adv. 2016, 6, 70394–70404.

    Article  Google Scholar 

  25. Fantechi, E.; Roca, A. G.; Sepúlveda, B.; Torruella, P.; Estradé, S.; Peiró, F.; Coy, E.; Jurga, S.; Bastús, N. G.; Nogués, J. et al. Seeded growth synthesis of Au–Fe3O4 heterostructured nanocrystals: Rational design and mechanistic insights. Chem. Mater. 2017, 29, 4022–4035.

    Article  Google Scholar 

  26. Yu, H.; Chen, M.; Rice, P. M.; Wang, S. X.; White, R. L.; Sun, S. H. Dumbbell-like bifunctional Au-Fe3O4 nanoparticles. Nano Lett. 2005, 5, 379–382.

    Article  Google Scholar 

  27. Shi, W. L.; Zeng, H.; Sahoo, Y.; Ohulchanskyy, T. Y.; Ding, Y.; Wang, Z. L.; Swihart, M.; Prasad, P. N. A general approach to binary and ternary hybrid nanocrystals. Nano Lett. 2006, 6, 875–881.

    Article  Google Scholar 

  28. Shevchenko, E. V.; Bodnarchuk, M. I.; Kovalenko, M. V.; Talapin, D. V.; Smith, R. K.; Aloni, S.; Heiss, W.; Alivisatos, A. P. Gold/iron oxide core/ hollow-shell nanoparticles. Adv. Mater. 2008, 20, 4323–4329.

    Article  Google Scholar 

  29. León Félix, L.; Coaquira, J. A. H.; Martínez, M. A. R.; Goya, G. F.; Mantilla, J.; Sousa, M. H.; de los Valladares, L.; Barnes, C. H. W.; Morais, P. C. Structural and magnetic properties of core-shell Au/Fe3O4 nanoparticles. Sci. Rep. 2017, 7, 41732.

    Article  Google Scholar 

  30. Lloret, P.; Longinotti, G.; Ybarra, G.; Socolovsky, L.; Moina, C. Synthesis, characterization and biofunctionalization of magnetic gold nanostructured particles. Mater. Res. Bull. 2013, 48, 3671–3676.

    Article  Google Scholar 

  31. Sheng, Y.; Xue, J. M. Synthesis and properties of Au-Fe3O4 heterostructured nanoparticles. J. Colloid Interface Sci. 2012, 374, 96–101.

    Article  Google Scholar 

  32. Reguera, J.; Jiménez de Aberasturi, D.; Henriksen-Lacey, M.; Langer, J.; Espinosa, A.; Szczupak, B.; Wilhelm, C.; Liz-Marzan, L. M. Janus plasmonicmagnetic gold-iron oxide nanoparticles as contrast agents for multimodal imaging. Nanoscale 2017, 9, 9467–9480.

    Article  Google Scholar 

  33. Wei, Y. H.; Klajn, R.; Pinchuk, A. O.; Grzybowski, B. A. Synthesis, shape control, and optical properties of hybrid Au/Fe3O4 “nanoflowers”. Small 2008, 4, 1635–1639.

    Article  Google Scholar 

  34. Lou, L.; Yu, K.; Zhang, Z. L.; Huang, R.; Zhu, J. Z.; Wang, Y. T.; Zhu, Z. Q. Dual-mode protein detection based on Fe3O4-Au hybrid nanoparticles. Nano Res. 2012, 5, 272–282.

    Article  Google Scholar 

  35. Chandra, S.; Huls, N. A. F.; Phan, M. H.; Srinath, S.; Garcia, M. A.; Lee, Y.; Wang, C.; Sun, S. H.; Iglesias, Ò.; Srikanth, H. Exchange bias effect in Au-Fe3O4 nanocomposites. Nanotechnology 2014, 25, 055702.

    Article  Google Scholar 

  36. Feygenson, M.; Bauer, J. C.; Gai, Z.; Marques, C.; Aronson, M. C.; Teng, X. W.; Su, D.; Stanic, V.; Urban, V. S.; Beyer, K. A. et al. Exchange bias effect in Au-Fe3O4 dumbbell nanoparticles induced by the charge transfer from gold. Phys. Rev. B 2015, 92, 054416.

    Article  Google Scholar 

  37. Pineider, F.; de Julián Fernández, C.; Videtta, V.; Carlino, E.; Al Hourani, A.; Wilhelm, F.; Rogalev, A.; Cozzoli, P. D.; Ghigna, P.; Sangregorio, C. Spin-polarization transfer in colloidal magnetic-plasmonic Au/iron oxide hetero-nanocrystals. ACS Nano 2013, 7, 857–866.

    Article  Google Scholar 

  38. Shen, C. M.; Hui, C.; Yang, T. Z.; Xiao, C. W.; Tian, J. F.; Bao, L. H.; Chen, S. T.; Ding, H.; Gao, H. J. Monodisperse noble-metal nanoparticles and their surface enhanced Raman scattering properties. Chem. Mater. 2008, 20, 6939–6944.

    Article  Google Scholar 

  39. Ingham, B.; Lim, T. H.; Dotzler, C. J.; Henning, A.; Toney, M. F.; Tilley, R. D. How nanoparticles coalesce: An in situ study of au nanoparticle aggregation and grain growth. Chem. Mater. 2011, 23, 3312–3317.

    Article  Google Scholar 

  40. Hyeon, T.; Lee, S. S.; Park, J.; Chung, Y.; Na, H. B. Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a sizeselection process. J. Am. Chem. Soc. 2001, 123, 12798–12801.

    Article  Google Scholar 

  41. Qiao, L.; Fu, Z.; Li, J.; Ghosen, J.; Zeng, M.; Stebbins, J.; Prasad, P. N.; Swihart, M. T. Standardizing size- and shape-controlled synthesis of monodisperse magnetite (Fe3O4) nanocrystals by identifying and exploiting effects of organic impurities. ACS Nano 2017, 11, 6370–6381.

    Article  Google Scholar 

  42. Pinna, N.; Grancharov, S.; Beato, P.; Bonville, P.; Antonietti, M.; Niederberger, N. Magnetite nanocrystals: Nonaqueous synthesis, characterization, and solubility. Chem. Mater. 2005, 17, 3044–3049.

    Article  Google Scholar 

  43. Niederberger, M.; Pinna, N. Metal Oxide Nanoparticles in Organic Solvents: Synthesis, Formation, Assembly and Application; Springer: London, 2009.

    Book  Google Scholar 

  44. Orbaek, A. W.; Morrow, L.; Maguire-Boyle, S. J.; Barron, A. R. Reagent control over the composition of mixed metal oxide nanoparticles. J. Exp. Nanosci. 2015, 10, 324–349.

    Article  Google Scholar 

  45. Sun, S. H.; Zeng, H.; Robinson, D. B.; Raoux, S.; Rice, P. M.; Wang, S. X.; Li, G. X. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 2004, 126, 273–279.

    Article  Google Scholar 

  46. Shemer, G.; Tirosh, E.; Livneh, T.; Markovich, G. Tuning a colloidal synthesis to control Co2+ doping in ferrite nanocrystals. J. Phys. Chem. C 2007, 111, 14334–14338.

    Article  Google Scholar 

  47. Park, J.; An, K.; Hwang, Y.; Park, J. G.; Noh, H. J.; Kim, J. Y.; Park, J. H.; Hwang, N. M.; Hyeon, T. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 2004, 3, 891–895.

    Article  Google Scholar 

  48. Vreeland, E. C.; Watt, J.; Schober, G. B.; Hance, B. G.; Austin, M. J.; Price, A. D.; Fellows, B. D.; Monson, T. C.; Hudak, N. S.; Maldonado-Camargo, L. et al. Enhanced nanoparticle size control by extending LaMer’s mechanism. Chem. Mater. 2015, 27, 6059–6066.

    Article  Google Scholar 

  49. Peng, S.; Lee, Y.; Wang, C.; Yin, H. F.; Dai, S.; Sun, S. H. A facile synthesis of monodisperse Au nanoparticles and their catalysis of Co oxidation. Nano Res. 2008, 1, 229–234.

    Article  Google Scholar 

  50. Moscoso-Londoño, O.; Muraca, D.; Tancredi, P.; Cosio-Castañeda, C.; Pirota, K. R.; Socolovsky, L. M. Physicochemical studies of complex silver–magnetite nanoheterodimers with controlled morphology. J. Phys. Chem. C 2014, 118, 13168–13176.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordination for the Improvement of Higher Education Personnel (CAPES) - Finance Code 001, Brazil. O. M.-L., M. K. and D. M. acknowledge the Brazilian agencies Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (2014/26672-8; 2011-12356) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (303236/2017-5). L. M. S. and P. T. acknowledge the Argentinian agency Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (fellowship and project PIP 468CO). L. S. C. and D. Z. acknowledge Coordenação de aperfeiçoamento de pessoal de nivel superior (CAPES) (PhD fellowship 1140906), FAPESP (2011/50727-9) and CNPq (309373/2014-0). The authors acknowledge the Brazilian Nanotechnology National Laboratory (LNNano) for the use of electron microscopy facility under the projects ME–22345, 21812, TEM 13321, 18588, 19497, 20570, 20302 and 20220.

Electronic Supplementary Material: Supplementary material (additional synthesis protocols, AuNPs characterization, Au/FeOx X-ray diffractograms and Au/FeOx additional TEM, HRTEM images and linescan EDS) is available in the online version of this article at https://doi.org/10.1007/s12274-019-2431-7.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniela Zanchet or Marcelo Knobel.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tancredi, P., da Costa, L.S., Calderon, S. et al. Exploring the synthesis conditions to control the morphology of gold-iron oxide heterostructures. Nano Res. 12, 1781–1788 (2019). https://doi.org/10.1007/s12274-019-2431-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2431-7

Keywords

Navigation