Skip to main content
Log in

Highly efficient multi-metal catalysts for carbon dioxide reduction prepared from atomically sequenced metal organic frameworks

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The precise control on the combination of multiple metal atoms in the structure of metal-organic frameworks (MOFs) endowed by reticular chemistry, allows the obtaining of materials with compositions that are programmed for achieving enhanced reactivity. The present work illustrates how through the transformation of MOFs with desired arrangements of metal cations, multi-metal spinel oxides with precise compositions can be obtained, and used as catalyst precursor for the reverse water-gas shift reaction. The differences in the spinel initial composition and structure, determined by neutron powder diffraction, influence the overall catalytic activity with changes in the process of in situ formation of active, metal-oxide supported metal nanoparticles, which have been monitored and characterized with in situ X-ray diffraction and photoelectron spectroscopy studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hepburn, C.; Adlen, E.; Beddington, J.; Carter, E. A.; Fuss, S.; Mac Dowell, N.; Minx, J. C.; Smith, P.; Williams, C. K. The technological and economic prospects for CO2 utilization and removal. Nature2019, 575, 87–97.

    CAS  Google Scholar 

  2. de la Peña O’Shea, V. A.; Menéndez, N. N.; Tornero, J. D.; Fierro, J. L. G. Unusually high selectivity to C2+ alcohols on bimetallic CoFe catalysts during CO hydrogenation. Catal. Lett.2003, 88, 123–128.

    Google Scholar 

  3. Su, X.; Yang, X. L.; Zhao, B.; Huang, Y. Q. Designing of highly selective and high-temperature endurable RWGS heterogeneous catalysts: Recent advances and the future directions. J. Energy Chem.2017, 26, 854–867.

    Google Scholar 

  4. Daza, Y. A.; Kent, R. A.; Yung, M. M.; Kuhn, J. N. Carbon dioxide conversion by reverse water-gas shift chemical looping on perovskitetype oxides. Ind. Eng. Chem. Res.2014, 53, 5828–5837.

    CAS  Google Scholar 

  5. Álvarez Galván, C.; Schumann, J.; Behrens, M.; Fierro, J. L. G.; Schlögl, R.; Frei, E. Reverse water-gas shift reaction at the Cu/ZnO interface: Influence of the Cu/Zn ratio on structure-activity correlations. Appl. Catal. B: Environ.2016, 195, 104–111.

    Google Scholar 

  6. Porosoff, M. D.; Yan, B. H; Chen, J. G. Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: Challenges and opportunities. Energy Environ. Sci.2016, 9, 62–73.

    CAS  Google Scholar 

  7. Schumann, J.; Eichelbaum, M.; Lunkenbein, T.; Thomas, N.; Álvarez Galván, M. C.; Schlögl, R.; Behrens, M. Promoting strong metal support interaction: Doping ZnO for enhanced activity of Cu/ZnO:M (M = Al, Ga, Mg) catalysts. ACS Catal.2015, 5, 3260–3270.

    CAS  Google Scholar 

  8. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science2013, 341, 1230444.

    Google Scholar 

  9. Ding, M.; Flaig, R. W.; Jiang, H. L.; Yaghi, O. M. Carbon capture and conversion using metal-organic frameworks and MOF-based materials. Chem. Soc. Rev.2019, 48, 2783–2828.

    CAS  Google Scholar 

  10. Boyd, P. G.; Chidambaram, A.; García-Díez, E.; Ireland, C. P.; Daff, T. D.; Bounds, R.; Gładysiak, A.; Schouwink, P.; Moosavi, S. M.; Maroto-Valer, M. M. et al. Data-driven design of metal—organic frameworks for wet flue gas CO2 capture. Nature2019, 576, 253–256.

    CAS  Google Scholar 

  11. Diercks, C. S.; Liu, Y. Z.; Cordova, K. E.; Yaghi, O. M. The role of reticular chemistry in the design of CO2 reduction catalysts. Nat. Mater.2018, 17, 301–307.

    CAS  Google Scholar 

  12. Nguyen, P. T. K.; Nguyen, H. T. D.; Nguyen, H. N.; Trickett, C. A.; Ton, Q. T.; Gutiérrez-Puebla, E.; Monge, M. A.; Cordova, K. E.; Gándara, F. New metal-organic frameworks for chemical fixation of CO2. ACS Appl. Mater. Interfaces2018, 10, 733–744.

    CAS  Google Scholar 

  13. Dang, S.; Zhu, Q. L.; Xu, Q. Nanomaterials derived from metal—organic frameworks. Nat. Rev. Mater.2018, 3, 17075.

    CAS  Google Scholar 

  14. Zhang, E. H.; Wang, T.; Yu, K.; Liu, J.; Chen, W. X.; Li, A.; Rong, H. P.; Lin, R.; Ji, S. F.; Zheng, X. S. et al. Bismuth single atoms resulting from transformation of metal-organic frameworks and their use as electrocatalysts for CO2 reduction. J. Am. Chem. Soc.2019, 141, 16569–16573.

    CAS  Google Scholar 

  15. Wu, Y. S.; Huang, Z.; Jiang, H. Q.; Wang, C.; Zhou, Y.; Shen, W.; Xu, H. L.; Deng, H. X. Facile synthesis of uniform metal carbide nanoparticles from metal-organic frameworks by laser metallurgy. ACS Appl. Mater. Interfaces2019, 11, 44573–44581.

    CAS  Google Scholar 

  16. Jiang, H. Q.; Jin, S. Y.; Wang, C.; Ma, R. Q.; Song, Y. Y.; Gao, M. Y.; Liu, X. T.; Shen, A. G.; Cheng, G. J.; Deng, H. X. Nanoscale laser metallurgy and patterning in air using MOFs. J. Am. Chem. Soc.2019, 141, 5481–5489.

    CAS  Google Scholar 

  17. Castillo-Blas, C.; de la Peña-O’Shea, V. A.; Puente-Orench, I.; de Paz, J. R.; Sáez-Puche, R.; Gutiérrez-Puebla, E.; Gándara, F.; Monge, Á. Addressed realization of multication complex arrangements in metal-organic frameworks. Sci. Adv.2017, 3, e1700773.

    Google Scholar 

  18. Castillo-Blas, C.; López-Salas, N.; Gutiérrez, M. C.; Puente-Orench, I.; Gutiérrez-Puebla, E.; Ferrer, M. L.; Monge, M. Á.; Gándara, F. Encoding metal-cation arrangements in metal-organic frameworks for programming the composition of electrocatalytically active multimetal oxides. J. Am. Chem. Soc.2019, 141, 1766–1774.

    CAS  Google Scholar 

  19. Peng, L. M.; Cowley, J. M. EELS analysis of surface-channelled electrons. Surf. Sci.1988, 204, 555–567.

    CAS  Google Scholar 

  20. Abràmoff, M. D.; Magalhães, P. J.; Ram, S. J. Image processing with Image. J. Biophoton. Int.2004, 11, 36–42.

    Google Scholar 

  21. Häglund, J.; Fernández Guillermet, A.; Grimvall, G.; Körling, M. Theory of bonding in transition-metal carbides and nitrides. Phys. Rev. B1993, 48, 11685–11691.

    Google Scholar 

  22. Radler, M. J.; Cohen, J. B.; Sykora, G. P.; Mason, T.; Ellis, D. E.; Faber, J., Jr. The defect structures of Mn1−XO. J. Phys. Chem. Solids1992, 53, 141–154.

    CAS  Google Scholar 

  23. Richard, D.; Ferrand, M.; Kearley, G. J. Analysis and visualisation of neutron-scattering data. J. Neutron Res.1996, 4, 33–39.

    Google Scholar 

  24. Accelrys Inc. BIOVIA Materials Studio. http://Accelrys.Com/materials-studio (accessed Feb 1, 2020).

  25. Bulavchenko, O. A.; Gerasimov, E. Y.; Afonasenko, T. N. Reduction of double manganese—cobalt oxides: In situ XRD and TPR study. Dalt. Trans.2018, 47, 17153–17159.

    CAS  Google Scholar 

  26. Wang, L. H.; Liu, H.; Chen, Y.; Yang, S. Q. Reverse water—gas shift reaction over Co-precipitated Co–CeO2 catalysts: Effect of Co content on selectivity and carbon formation. Int. J. Hydrogen Energy2017, 42, 3682–3689.

    CAS  Google Scholar 

  27. Dai, B. C.; Zhou, G. L.; Ge, S. B.; Xie, H. M.; Jiao, Z. J.; Zhang, G. Z.; Xiong, K. CO2 reverse water-gas shift reaction on mesoporous M-CeO2 catalysts. Can. J. Chem. Eng.2017, 95, 634–642.

    CAS  Google Scholar 

  28. Aitbekova, A.; Goodman, E. D.; Wu, L. H.; Boubnov, A.; Hoffman, A. S.; Genc, A.; Cheng, H. K.; Casalena, L.; Bare, S. R.; Cargnello, M. Engineering of ruthenium—iron oxide colloidal heterostructures: Improved yields in CO2 hydrogenation to hydrocarbons. Angew. Chem., Int. Ed.2019, 58, 17451–17457.

    CAS  Google Scholar 

  29. Okemoto, A.; Harada, M. R.; Ishizaka, T.; Hiyoshi, N.; Sato, K. Catalytic performance of MoO3/FAU zeolite catalysts modified by Cu for reverse water gas shift reaction. Appl. Catal. A Gen.2020, 592, 117415.

    Google Scholar 

  30. Gao, P.; Li, S. G.; Bu, X. N.; Dang, S. S.; Liu, Z. Y.; Wang, H.; Zhong, L. S.; Qiu, M. H.; Yang, C. G.; Cai, J. et al. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst. Nat. Chem.2017, 9, 1019–1024.

    CAS  Google Scholar 

  31. Xu, H. T.; Li, Y. S.; Luo, X. K.; Xu, Z. L.; Ge, J. P. Monodispersed gold nanoparticles supported on a zirconium-based porous metal-organic framework and their high catalytic ability for the reverse water-gas shift reaction. Chem. Commun.2017, 53, 7953–7956.

    CAS  Google Scholar 

  32. Wang, C. T.; Guan, E. J.; Wang, L.; Chu, X. F.; Wu, Z. Y.; Zhang, J.; Yang, Z. Y.; Jiang, Y. W.; Zhang, L.; Meng, X. J. et al. Product selectivity controlled by nanoporous environments in zeolite crystals enveloping rhodium nanoparticle catalysts for CO2 hydrogenation. J. Am. Chem. Soc.2019, 141, 8482–8488.

    CAS  Google Scholar 

  33. Han, Y. Q.; Xu, H. T.; Su, Y. Q.; Xu, Z. L.; Wang, K. F.; Wang, W. Z. Noble metal (Pt, Au@Pd) nanoparticles supported on metal organic framework (MOF-74) nanoshuttles as high-selectivity CO2 conversion catalysts. J. Catal.2019, 370, 70–78.

    CAS  Google Scholar 

  34. Vrijburg, W. L.; Moioli, E.; Chen, W.; Zhang, M.; Terlingen, B. J. P.; Zijlstra, B.; Filot, I. A. W.; Züttel, A.; Pidko, E. A.; Hensen, E. J. M. Efficient base-metal NiMn/TiO2 catalyst for CO2 methanation. ACS Catal.2019, 9, 7823–7839.

    CAS  Google Scholar 

  35. Junca, E.; de Oliveira, J. R.; Restivo, T. A. G.; Espinosa, D. C. R.; Tenório, J. A. S. Synthetic zinc ferrite reduction by means of mixtures containing hydrogen and carbon monoxide. J. Therm. Anal. Calorim.2016, 123, 631–641.

    CAS  Google Scholar 

  36. de Siqueira, R. N. C.; de Albuquerque Brocchi, E.; de Oliveira, P. F.; Motta, M. S. Hydrogen reduction of zinc and iron oxides containing mixtures. Metall. Mater. Trans. B2014, 45, 66–75.

    CAS  Google Scholar 

  37. Galakhov, V. R.; Demeter, M.; Bartkowski, S.; Neumann, M.; Ovechkina, N. A.; Kurmaev, E. Z.; Lobachevskaya, N. I.; Mukovskii, Y. M.; Mitchell, J.; Ederer, D. L. Mn 3s exchange splitting in mixed-valence manganites. Phys. Rev. B2002, 65, 113102.

    Google Scholar 

  38. Álvarez-Galván, M. C.; de la Peña O’Shea, V. A.; Arzamendi, G.; Pawelec, B.; Gandía, L. M.; Fierro, J. L. G. Methyl ethyl ketone combustion over La-transition metal (Cr, Co, Ni, Mn) perovskites. Appl. Catal. B: Environ.2009, 92, 445–453.

    Google Scholar 

  39. Xu, L.; Jiang, Q. Q.; Xiao, Z. H.; Li, X. Y.; Huo, J.; Wang, S. Y.; Dai, L. M. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem., Int. Ed.2016, 55, 5277–5281.

    CAS  Google Scholar 

  40. de la Peña O’Shea, V. A.; Álvarez-Galván, M. C.; Campos-Martin, J. M.; Menéndez, N. N.; Tornero, J. D.; Fierro, J. L. G. Surface and structural features of Co-Fe oxide nanoparticles deposited on a silica substrate. Eur. J. Inorg. Chem.2006, 2006, 5057–5068.

    Google Scholar 

  41. Vaz, C. A. F.; Prabhakaran, D.; Altman, E. I.; Henrich, V. E. Experimental study of the interfacial cobalt oxide in Co3O4/αAl2O3 (0001) epitaxial films. Phys. Rev. B2009, 80, 155457.

    Google Scholar 

  42. Wang, W.; Wang, S. P.; Ma, X. B.; Gong, J. L. Recent advances in catalytic hydrogenation of carbon dioxide. Chem. Soc. Rev.2011, 40, 3703–3727.

    CAS  Google Scholar 

  43. Jin, Y. K.; Sun, G. H.; Wang, Z. M.; Pan, H. B.; Xu, L. S.; Xu, H.; Huang, W. X. Elementary surface reactions on Co(0001) under Fischer–Tropsch synthesis conditions. J. Phys. Chem. C2017, 121, 21535–21540.

    CAS  Google Scholar 

  44. Beitel, G. A.; de Groot, C. P. M.; Oosterbeek, H.; Wilson, J. H. A combined in-situ PM-RAIRS and kinetic study of single-crystal cobalt catalysts under synthesis gas at pressures up to 300 Mbar. J. Phys. Chem. B1997, 101, 4035–4043.

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge Institut Laue-Langevin and Spanish initiatives on Neutron Scattering (ILL-SpINS) for beamtime at instrument D2B and G. Cuello for assistance during data acquisition (10.5291/ILL-DATA.5-21-1114). We thank M. C. Capel for the TEM images and TEM-EDS analysis acquisition at Instituto de Catálisis y Petroleoquímica (CSIC). Funding: Work at Instituto de Ciencia de Materiales de Madrid–Consejo Superior de Instigaciones Científicas (CSIC) has been supported by the Spanish Research Agency (Agencia Estatal de Investigación, AEI), Projects MAT2016-78465-R and CTQ2017-87262-R. This work was supported by the EU (ERC CoG HyMAP 648319) and Spanish MINECO (ENE2016-79608-C2-1-R). Authors also wish to thank to “Comunidad de Madrid” and European Structural Funds for their financial support to FotoArt-CM project (S2018/NMT-4367). F. G. acknowledges financial support from MINECO Ramón y Cajal program (RyC-2015-18384).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Consuelo Álvarez-Galván, Ángeles Monge, Víctor A. de la Peña-O’Shea or Felipe Gándara.

Electronic Supplementary Material

12274_2020_2813_MOESM1_ESM.pdf

Highly efficient multi-metal catalysts for carbon dioxide reduction prepared from atomically sequenced metal organic frameworks

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castillo-Blas, C., Álvarez-Galván, C., Puente-Orench, I. et al. Highly efficient multi-metal catalysts for carbon dioxide reduction prepared from atomically sequenced metal organic frameworks. Nano Res. 14, 493–500 (2021). https://doi.org/10.1007/s12274-020-2813-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2813-x

Keywords

Navigation