Skip to main content
Log in

Microwave-assisted synthesis of Cr3C2@C core shell structure anchored on hierarchical porous carbon foam for enhanced polysulfide adsorption in Li-S batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In this paper, we use microwave reduction strategy to synthesize a new bi-functional sulfur host material at the service of cathode substrate for lithium-sulfur batteries (LSBs), the composite is made of hierarchical porous carbon foam supported carbon-encapsulated chromium carbide nano-particles (Cr3C2@C/HPCF), in which the well-distributed conductive Cr3C2 nano-particles can act as powerful chemical adsorbent and are effective in restraining the shuttle effect of lithium polysulfides (LiPSs). Test results show that the Cr3C2@C/HPCF based sulfur electrodes with 75 wt.% of sulfur exhibit a high initial discharging capacity of 1,321.1 mAh·g−1 at 0.1 C (3.5 mg·cm−2), and a reversible capacity can still maintain stability at 1,002.1 mAh·g−1 after 150 cycles. Even increasing the areal sulfur loading to 4 mg·cm−2, the electrodes can still deliver an initial discharging capacity of 948.0 mAh·g−1 at 0.5 C with ultra-slow capacity decay rate of 0.075% per cycle during 500 cycles. Furthermore, the adsorption energy between the Cr3C2 surface and LiPSs as well as theoretic analysis based on first-principles is also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fang, R. P.; Zhao, S. Y.; Sun, Z. H.; Wang, D. W.; Cheng, H. M.; Li, F. More reliable lithium-sulfur batteries: Status, solutions and prospects. Adv. Mater. 2017, 29, 1606823.

    Google Scholar 

  2. Zhou, G. M.; Xu, L.; Hu, G. W.; Mai, L. Q.; Cui, Y. Nanowires for electrochemical energy storage. Chem. Rev. 2019, 119, 11042–11109.

    CAS  Google Scholar 

  3. Wu, D. S.; Zhou, G. M.; Mao, E. Y.; Sun, Y. M.; Liu, B. F.; Wang, L.; Wang, J. Y.; Shi, F. F.; Cui, Y. A novel battery scheme: Coupling nanostructured phosphorus anodes with lithium sulfide cathodes. Nano Res. 2020, 13, 1383–1388.

    CAS  Google Scholar 

  4. Zhou, S. Y.; Hu, J. Y.; Liu, S. G.; Lin, J. X.; Cheng, J.; Mei, T.; Wang, X. B.; Liao, H. G.; Huang, L.; Sun, S. G. Biomimetic micro cell cathode for high performance lithium-sulfur batteries. Nano Energy 2020, 72, 104680.

  5. Seh, Z. W.; Sun, Y. M.; Zhang, Q. F.; Cui, Y. Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 2016, 45, 5605–5634.

    CAS  Google Scholar 

  6. Shi, Y.; Yi, Z. B.; Kuang, Y. P.; Guo, H. Y.; Li, Y. Z.; Liu, C.; Lu, Z. G. Constructing stable covalent bonding in black phosphorus/reduced graphene oxide for lithium ion battery anodes. Chem. Commun. 2020, 56, 11613–11616.

    CAS  Google Scholar 

  7. Li, F.; Liu, Q. H.; Hu, J. W.; Feng, Y. Z.; He, P. B.; Ma, J. M. Recent advances in cathode materials for rechargeable lithium—sulfur batteries. Nanoscale 2019, 11, 15418–15439.

    CAS  Google Scholar 

  8. Nitta, N.; Wu, F. X.; Lee, J. T.; Yushin, G. Li-ion battery materials: Present and future. Mater. Today 2015, 18, 252–264.

    CAS  Google Scholar 

  9. Camacho-Forero, L. E.; Balbuena, P. B. Elucidating interfacial phenomena between solid-state electrolytes and the sulfur-cathode of lithium-sulfur batteries. Chem. Mater. 2020, 32, 360–373.

    CAS  Google Scholar 

  10. Bhargav, A.; He, J. R.; Gupta, A.; Manthiram, A. Lithium-sulfur batteries: Attaining the critical metrics. Joule 2020, 4, 285–291.

    Google Scholar 

  11. Wang, F.; Zuo, Z. C.; Li, L.; He, F.; Li, Y. L. Graphdiyne nano-structure for high-performance lithium-sulfur batteries. Nano Energy 2020, 68, 104307.

    CAS  Google Scholar 

  12. Yu, X. F.; Tian, D. X.; Li, W. C.; He, B.; Zhang, Y.; Chen, Z. Y.; Lu, A. H. One-pot synthesis of highly conductive nickel-rich phosphide/CNTs hybrid as a polar sulfur host for high-rate and long-cycle Li-S battery. Nano Res. 2019, 12, 1193–1197.

    CAS  Google Scholar 

  13. Maletti, S.; Podetti, F. S.; Oswald, S.; Giebeler, L.; Barbero, C. A.; Mikhailova, D.; Balach, J. LiV3O8-based functional separator coating as effective polysulfide mediator for lithium-sulfur batteries. ACS Appl. Energy Mater. 2020, 3, 2893–2899.

    CAS  Google Scholar 

  14. Li, Z. H.; Zhou, C.; Hua, J. H.; Hong, X. F.; Sun, C. L.; Li, H. W.; Xu, X.; Mai, L. Q. Engineering oxygen vacancies in a polysulfide-blocking layer with enhanced catalytic ability. Adv. Mater. 2020, 32, 1907444.

    CAS  Google Scholar 

  15. Tu, J. X.; Li, H. J.; Chen, S. S.; Zou, J. Z.; Zeng, S. Z.; Deng, F.; Zeng, X. R. Three-dimensional porous carbon skeleton synthesized by a template-free and no-post-activation process applied for highperformance lithium-sulfur batteries. ACS Sustainable Chem. Eng. 2020, 8, 6964–6971.

    CAS  Google Scholar 

  16. Liao, Y. Q.; Xiang, J. W.; Yuan, L. X.; Hao, Z. X.; Gu, J. F.; Chen, X.; Yuan, K.; Kalambate, P. K.; Huang, Y. H. Biomimetic root-like TiN/C@S nanofiber as a freestanding cathode with high sulfur loading for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 37955–37962.

    CAS  Google Scholar 

  17. Cui, G. L.; Li, G. R.; Luo, D.; Zhang, Y. G.; Zhao, Y.; Wang, D. R.; Wang, J. Y.; Zhang, Z.; Wang, X.; Chen, Z. W. Three-dimensionally ordered macro-microporous metal organic frameworks with strong sulfur immobilization and catalyzation for high-performance lithium-sulfur batteries. Nano Energy 2020, 72, 104685.

    CAS  Google Scholar 

  18. Zheng, Y.; Zheng, S. S.; Xue, H. G.; Pang, H. Metal—organic frameworks for lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 3469–3491.

    CAS  Google Scholar 

  19. Tu, J. X.; Li, H. J.; Zou, J. Z.; Zeng, S. Z.; Zhang, Q.; Yu, L.; Zeng, X. R. Microwave-assisted rapid preparation of hollow carbon nanospheres@ TiN nanoparticles for lithium—sulfur batteries. Dalton Trans. 2018, 47, 16909–16917.

    CAS  Google Scholar 

  20. Peng, H. J.; Huang, J. Q.; Cheng, X. B.; Zhang, Q. Review on high-loading and high-energy lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1700260.

    Google Scholar 

  21. Yang, W.; Yang, W.; Dong, L. B.; Gao, X. C.; Wang, G. X.; Shao, G. J. Enabling immobilization and conversion of polysulfides through a nitrogen-doped carbon nanotubes/ultrathin MoS2 nanosheet core-shell architecture for lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 13103–13112.

    CAS  Google Scholar 

  22. Ma, L. B.; Zhang, W. J.; Wang, L.; Hu, Y.; Zhu, G. Y.; Wang, Y. R.; Chen, R. P.; Chen, T.; Tie, Z. X.; Liu, J. et al. Strong capillarity, chemisorption, and electrocatalytic capability of crisscrossed nano-straws enabled flexible, high-rate, and long-cycling lithium-sulfur batteries. ACS Nano 2018, 12, 4868–4876.

    CAS  Google Scholar 

  23. Hu, J.; Wang, Z. Y.; Fu, Y.; Lyu, L.; Lu, Z. G.; Zhou, L. M. In situ assembly of MnO2 nanosheets on sulfur-embedded multichannel carbon nanofiber composites as cathodes for lithium-sulfur batteries. Sci. China Mater. 2020, 63, 728–738.

    CAS  Google Scholar 

  24. Li, N.; Chen, Z. X.; Chen, F.; Hu, G. J.; Wang, S. G.; Sun, Z. H.; Sun, X. D.; Li, F. From interlayer to lightweight capping layer: Rational design of mesoporous TiO2 threaded with CNTs for advanced Li—S batteries. Carbon 2019, 143, 523–530.

    CAS  Google Scholar 

  25. Wang, Y. K.; Zhang, R. F.; Chen, J.; Wu, H.; Lu, S. Y.; Wang, K.; Li, H. L.; Harris, C. J.; Xi, K.; Kumar, R. V. et al. Enhancing catalytic activity of titanium oxide in lithium-sulfur batteries by band engineering. Adv. Energy Mater. 2019, 9, 1900953.

    Google Scholar 

  26. Zheng, C.; Niu, S. Z.; Lv, W.; Zhou, G. M.; Li, J.; Fan, S. X.; Deng, Y. Q.; Pan, Z. Z.; Li, B. H.; Kang, F. Y. et al. Propelling polysulfides transformation for high-rate and long-life lithium-sulfur batteries. Nano Energy 2017, 33, 306–312.

    CAS  Google Scholar 

  27. Tian, Y.; Zhao, Y.; Zhang, Y. G.; Ricardez-Sandoval, L.; Wang, X.; Li, J. D. Construction of oxygen-deficient La(OH)3 nanorods wrapped by reduced graphene oxide for polysulfide trapping toward highperformance lithium/sulfur batteries. ACS Appl. Mater. Interfaees 2019, 11, 23271–23279.

    CAS  Google Scholar 

  28. Gao, C.; Fang, C. Z.; Zhao, H. M.; Yang, J. Y.; Gu, Z. D.; Sun, W.; Zhang, W. N.; Li, S.; Xu, L. C.; Li, X. Y. et al. Rational design of multi-functional CoS@rGO composite for performance enhanced Li-S cathode. J. Power Sourees 2019, 421, 132–138.

    CAS  Google Scholar 

  29. Tu, J. X.; Li, H. J.; Lan, T. B.; Zeng, S. Z.; Zou, J. Z.; Zhang, Q.; Zeng, X. R. Facile synthesis of TiN nanocrystals/graphene hybrid to chemically suppress the shuttle effect for lithium-sulfur batteries. J. Alloys Compd. 2020, 822, 153751.

    CAS  Google Scholar 

  30. Wang, H. Q.; Zhang, N.; Li, Y.; Zhang, P. Y.; Chen, Z.; Zhang, C. F.; Qiao, X.; Dai, Y. J.; Wang, Q. H.; Liu, S. H. Unique flexible NiFe2O4@S/rGO-CNT electrode via the synergistic adsorption/electrocatalysis effect toward high-performance lithium-sulfur batteries. J. Phys. Chem. Lett. 2019, 10, 6518–6524.

    CAS  Google Scholar 

  31. Li, C. X.; Xi, Z. C.; Guo, D. X.; Chen, X. J.; Yin, L. W. Chemical immobilization effect on lithium polysulfides for lithium-sulfur batteries. Small 2018, 14, 1701986.

    Google Scholar 

  32. Cai, W. L.; Li, G. R.; Zhang, K. L.; Xiao, G. N.; Wang, C.; Ye, K. F.; Chen, Z. W.; Zhu, Y. C.; Qian, Y. T. Conductive nanocrystalline niobium carbide as high-efficiency polysulfides tamer for lithium-sulfur batteries. Adv. Funet. Mater. 2018, 28, 1704865.

    Google Scholar 

  33. Li, H. X.; Ma, S.; Cai, H. Q.; Zhou, H. H.; Huang, Z. Y.; Hou, Z. H.; Wu, J. J.; Yang, W. J.; Yi, H. B.; Fu, C. P. et al. Ultra-thin Fe3C nanosheets promote the adsorption and conversion of polysulfides in lithium-sulfur batteries. Energy Storage Mater. 2019, 18, 338–348.

    Google Scholar 

  34. Kavitha, M.; Priyanga, G. S.; Rajeswarapalanichamy, R.; Iyakutti, K. Structural stability, electronic, mechanical and superconducting properties of CrC and MoC. Mater. Chem. Phys. 2016, 169, 71–81.

    CAS  Google Scholar 

  35. Tao, X. Y.; Chen, X. R.; Xia, Y.; Huang, H.; Gan, Y. P.; Wu, R.; Chen, F.; Zhang, W. K. Highly mesoporous carbon foams synthesized by a facile, cost-effective and template-free Pechini method for advanced lithium-sulfur batteries. J. Mater. Chem. A 2013, 1, 3295–3301.

    CAS  Google Scholar 

  36. Sun, Q. Q.; Chen, K. X.; Liu, Y. B.; Li, Y. F.; Wei, M. D. Rutile TiO2 Mesocrystals as sulfur host for high-performance lithium-sulfur batteries. Chem.-Eur. J. 2017, 23, 16312–16318.

    CAS  Google Scholar 

  37. Hu, Y.; Chen, W.; Lei, T. Y.; Jiao, Y.; Wang, H. B.; Wang, X. P.; Rao, G. F.; Wang, X. F.; Chen, B.; Xiong, J. Graphene quantum dots as the nucleation sites and interfacial regulator to suppress lithium dendrites for high-loading lithium-sulfur battery. Nano Energy 2020, 68, 104373.

    CAS  Google Scholar 

  38. Li, X. X.; Gao, B.; Huang, X.; Guo, Z. J.; Li, Q. W.; Zhang, X. M.; Chu, P. K.; Huo, K. F. Conductive Mesoporous niobium nitride microspheres/nitrogen-doped graphene hybrid with efficient polysulfide anchoring and catalytic conversion for high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaees 2019, 11, 2961–2969.

    CAS  Google Scholar 

  39. Chen, D.; Yue, X. Y.; Li, X. L.; Bao, J.; Qiu, Q. Q.; Wu, X. J.; Zhang, X.; Zhou, Y. N. Freestanding double-layer MoO3/CNT@S membrane: A promising flexible cathode for lithium-sulfur batteries. ACS Appl. Mater. Interfaees 2020, 12, 2354–2361.

    CAS  Google Scholar 

  40. Chen, G. L.; Li, Y. J.; Zhong, W. T.; Zheng, F. H.; Hu, J. H.; Ji, X. H.; Liu, W. Z.; Yang, C. H.; Lin, Z.; Liu, M. L. MOFs-derived porous Mo2C-C nano-octahedrons enable high-performance lithium-sulfur batteries. Energy Storage Mater. 2020, 25, 547–554.

    Google Scholar 

  41. Li, G. R.; Lei, W.; Luo, D.; Deng, Y. P.; Wang, D. L.; Chen, Z. W. 3D porous carbon sheets with multidirectional ion pathways for fast and durable lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1702381.

    Google Scholar 

  42. Li, G. R.; Lei, W.; Luo, D.; Deng, Y. P.; Deng, Z. P.; Wang, D. L.; Yu, A. P.; Chen, Z. W. Stringed “tube on cube” nanohybrids as compact cathode matrix for high-loading and lean-electrolyte lithium-sulfur batteries. Energy Environ. Sci. 2018, 11, 2372–2381.

    CAS  Google Scholar 

  43. Zhou, X. F.; Chen, L. L.; Zhang, W. H.; Wang, J. W.; Liu, Z. J.; Zeng, S. F.; Xu, R.; Wu, Y.; Ye, S. F.; Feng, Y. Z. et al. Three-dimensional ordered macroporous metal-organic framework single crystal-derived nitrogen-doped hierarchical porous carbon for high-performance potassium-ion batteries. Nano Lett. 2019, 19, 4965–4973.

    CAS  Google Scholar 

  44. Wen, Q. B.; Yu, Z. J.; Riedel, R. The fate and role of in situ formed carbon in polymer-derived ceramics. Prog. Mater. Sci. 2020, 109, 100623

    CAS  Google Scholar 

  45. Wen, Q. B.; Yao, F.; Yu, Z. J.; Peng, D. L.; Riedel, R. Microwave absorption of SiC/HfCxN1−x/C ceramic nanocomposites with HflCxN1−x-carbon core-shell particles. J. Am. Ceram. Soc. 2016, 99, 2655–2663.

    CAS  Google Scholar 

  46. Ramqvist, L. Electronic structure of cubic refractory carbides. J. Appl. Phys. 1971, 42, 2113–2120.

    CAS  Google Scholar 

  47. Detroye, M.; Reniers, F.; Buess-Herman, C.; Vereecken, J. AES-XPS study of chromium carbides and chromium iron carbides. Appl. Surf. Sci. 1999, 144–45, 78–82.

    Google Scholar 

  48. Zhang, P.; Li, X. L.; Hua, Y.; Yu, J. J.; Ding, Y. S. Enhanced performance and anchoring polysulfide mechanism of carbon aerogel/sulfur material with Cr doping and pore tuning for Li-S batteries. Eleetroehim. Acta 2018, 282, 499–509.

    CAS  Google Scholar 

  49. Yang, T.; Chen, Z.; Zhang, H.; Zhang, M.; Wang, T. H. Multifunctional Cr2O3 quantum nanodots to improve the lithium-ion storage performance of free-standing carbon nanofiber networks. Eleetroehim. Acta 2016, 217, 55–61.

    CAS  Google Scholar 

  50. Gan, Y. Q.; Lai, Y. Q.; Zhang, Z.; Chen, W.; Du, K.; Li, J. Hierarchical Cr2O3@OPC composites with octahedral shape for rechargeable nonaqueous lithium-oxygen batteries. J. Alloys Compd. 2016, 665, 365–372.

    CAS  Google Scholar 

  51. Sun, Z. H.; Zhang, J. Q.; Yin, L. C.; Hu, G. J.; Fang, R. P.; Cheng, H. M.; Li, F. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat. Commun. 2017, 8, 14627.

    Google Scholar 

  52. Li, Z. H.; He, Q.; Xu, X.; Zhao, Y.; Liu, X. W.; Zhou, C.; Ai, D.; Xia, L. X.; Mai, L. Q. A 3D nitrogen-doped Graphene/TiN nanowires composite as a strong polysulfide anchor for lithium-sulfur batteries with enhanced rate performance and high areal capacity. Adv. Mater. 2018, 30, 1804089.

    Google Scholar 

  53. Zhou, F.; Li, Z.; Luo, X.; Wu, T.; Jiang, B.; Lu, L. L.; Yao, H. B.; Antonietti, M.; Yu, S. H. Low cost metal carbide nanocrystals as binding and electrocatalytic sites for high performance Li-S batteries. Nano Lett. 2018, 18, 1035–1043.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate support by the Natural Science Foundation of Anhui Province (No. 1908085ME147); Projects of International Cooperation and Exchanges in Anhui Provincial Key Project of Research (No. 202004b11020010); Shenzhen Basic Research Program (Nos. JCYJ20190808141611189, JCYJ20170818100134570, and JCYJ20160422091418366); Basic and applied basic research fund of Guangdong Province (No. 2020A1515011018); we are grateful to Instrumental Analysis Center of Shenzhen University (Xili Campus) for the help with TEM, and thanks for technical support by Ceshigo Research Service Agency (https://www.ceshigo.com) for XAS, AC-STEM and DFT/MD.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xierong Zeng or Kezhi Li.

Electronic Supplementary Material

12274_2020_3233_MOESM1_ESM.pdf

Microwave-assisted synthesis of Cr3C2@C core shell structure anchored on hierarchical porous carbon foam for enhanced polysulfide adsorption in Li-S batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, X., Tu, J., Chen, S. et al. Microwave-assisted synthesis of Cr3C2@C core shell structure anchored on hierarchical porous carbon foam for enhanced polysulfide adsorption in Li-S batteries. Nano Res. 14, 2345–2352 (2021). https://doi.org/10.1007/s12274-020-3233-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3233-7

Keywords

Navigation