Skip to main content
Log in

Coupled Tamm plasmon polaritons induced narrow bandpass filter with ultra-wide stopband

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Narrow bandpass filters (NBPFs) play important roles in optics, such as quantum communication, spectrometer, and wavelength division multiplexing. However, the stopband and restraint ability of traditional NBPFs is limited. In this article, a coupled Tamm plasmon polaritons (TPPs) induced transmission theory has been proposed to design high-efficiency NBPFs with ultra-wide deep stopbands. An NBPF at 1.55 µm has been experimentally demonstrated with full width at half maximum (FWHM) of 10 nm and stopband ranging from 0.2 to 25 µm which is 62 times wider than that of traditional ones. Furthermore, the restraint depth of the stopband reaches 0.03%, which is only 1/20 of a traditional filter with the same FWHM. Its advantage in restraining ambient light over traditional ones has also been demonstrated with an InGaAs infrared detector. It provides a very powerful way to capture specific narrowband optical signals from ultra-wide strong ambient light, especially useful for daytime quantum communications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Richardson, D. J.; Fini, J. M.; Nelson, L. E. Space-division multiplexing in optical fibres. Nat. Photonics 2013, 7, 354–362.

    Article  CAS  Google Scholar 

  2. Luo, L. W.; Ophir, N.; Chen, C. P.; Gabrielli, L. H.; Poitras, C. B.; Bergmen, K.; Lipson, M. WDM-compatible mode-division multiplexing on a silicon chip. Nat. Commun. 2014, 5, 3069.

    Article  Google Scholar 

  3. MacLeod, A. H. Thin-Film Optical Filters; 4th ed. CRC Press: New York, 2010.

    Book  Google Scholar 

  4. Marsili, F.; Verma, V. B.; Stern, J. A.; Harrington, S.; Lita, A. E.; Gerrits, T.; Vayshenker, I.; Baek, B.; Shaw, M. D.; Mirin, R. P. et al. Detecting single infrared photons with 93% system efficiency. Nat. Photonics 2013, 7, 210–214.

    Article  CAS  Google Scholar 

  5. Wang, S. W.; Xia, C. S.; Chen, X. S.; Lu, W.; Li, M.; Wang, H. Q.; Zheng, W. B.; Zhang, T. Concept of a high-resolution miniature spectrometer using an integrated filter array. Opt. Lett. 2007, 32, 632–634.

    Article  Google Scholar 

  6. Cong, S.; Liu, X. H.; Jiang, Y. X.; Zhang, W.; Zhao, Z. G. Surface enhanced Raman scattering revealed by interfacial charge-transfer transitions. Innovation 2020, 1, 100051.

    Google Scholar 

  7. Zhang, S. D.; Bin, W.; Xu, B. B.; Zheng, X. Y.; Chen, B. B.; Lv, X. Q.; San, H. S.; Hofmann, W. Mixed-gas CH4/CO2/CO detection based on linear variable optical filter and thermopile detector array. Nanoscale Res. Lett. 2019, 14, 348.

    Article  Google Scholar 

  8. Araújo, A. Multi-spectral pyrometry—a review. Meas. Sci. Technol. 2017, 28, 082002.

    Article  Google Scholar 

  9. Xuan, Z. Y.; Li, J. Y.; Liu, Q. Q.; Yi, F.; Wang, S. W.; Lu, W. Artificial structural colors and applications. Innovation 2021, 2, 100081.

    CAS  Google Scholar 

  10. Bierman, D. M.; Lenert, A.; Chan, W. R.; Bhatia, B.; Celanovic, I.; Soljacic, M.; Wang, E. N. Enhanced photovoltaic energy conversion using thermally based spectral shaping. Nat. Energy 2016, 1, 16068.

    Article  CAS  Google Scholar 

  11. Lenert, A.; Bierman, D. M.; Nam, Y.; Chan, W. R.; Celanovic, I.; Soljacic, M.; Wang, E. N. A nanophotonic solar thermophotovoltaic device. Nat. Nanotechnol. 2014, 9, 126–130.

    Article  CAS  Google Scholar 

  12. Kaushal, H.; Kaddoum, G. Optical communication in space: Challenges and mitigation techniques. IEEE Commun. Surv. Tutor. 2017, 19, 57–96.

    Article  Google Scholar 

  13. Khalighi, M. A.; Uysal, M. Survey on free space optical communication: A communication theory perspective. IEEE Commun. Surv. Tutor. 2014, 16, 2231–2258.

    Article  Google Scholar 

  14. Miao, E. L.; Han, Z. F.; Gong, S. S.; Zhang, T.; Diao, D. S.; Guo, G. C. Background noise of satellite-to-ground quantum key distribution. New J. Phys. 2005, 7, 215–215.

    Article  Google Scholar 

  15. Miller, D. A. B. Device requirements for optical interconnects to silicon chips. Proc. IEEE 2009, 97, 1166–1185.

    Article  CAS  Google Scholar 

  16. Xu, F. H.; Ma, X. F.; Zhang, Q.; Lo, H. K.; Pan, J. W. Secure quantum key distribution with realistic devices. Rev. Mod. Phys. 2020, 92, 025002.

    Article  CAS  Google Scholar 

  17. Popkin, G. China’s quantum satellite achieves ‘spooky action’ at record distance. Science, in press, https://doi.org/10.1126/science.aan6972.

  18. Joannopoulos, J. D.; Meade, R. D.; Winn, J. N. Photonic Crystals: Molding the Flow of Light; Pinceton University Press: Princeton, 1995.

    Google Scholar 

  19. Wang, L.; Wang, Z. S.; Wu, Y. G.; Chen, L. Y.; Wang, S. W.; Chen, X. S.; Lu, W. Enlargement of the nontransmission frequency range of multiple-channeled filters by the use of heterostructures. J. Appl. Phys. 2004, 95, 424–426.

    Article  CAS  Google Scholar 

  20. Wang, S. W.; Chen, F. L.; Liang, L. Y.; He, S. L.; Wang, Y. G.; Chen, X. S.; Lu, W. A high-performance blue filter for a white-led-based visible light communication system. IEEE Wirel. Commun. 2015, 22, 61–67.

    Article  CAS  Google Scholar 

  21. Lezec, H. J.; Degiron, A.; Devaux, E.; Linke, R. A.; Martin-Moreno, L.; Garcia-Vidal, F. J.; Ebbesen, T. W. Beaming light from a subwavelength aperture. Science 2002, 297, 820–822.

    Article  CAS  Google Scholar 

  22. Genet, C.; Ebbesen, T. W. Light in tiny holes. Nature 2007, 445, 39–46.

    Article  CAS  Google Scholar 

  23. Yang, C. Y.; Shen, W. D.; Zhou, J.; Fang, X.; Zhao, D.; Zhang, X.; Ji, C. G.; Fang, B.; Zhang, Y. G.; Liu, X. et al. Angle robust reflection/transmission plasmonic filters using ultrathin metal patch array. Adv. Opt. Mater. 2016, 4, 1981–1986.

    Article  CAS  Google Scholar 

  24. Fan, S. H.; Joannopoulos, J. D. Analysis of guided resonances in photonic crystal slabs. Phys. Rev. B 2002, 65, 235112.

    Article  Google Scholar 

  25. Fan, S. H.; Suh, W.; Joannopoulos, J. D. Temporal coupled-mode theory for the Fano resonance in optical resonators. J. Opt. Soc. Am. A 2003, 20, 569–572.

    Article  Google Scholar 

  26. Shen, Y. C.; Rinnerbauer, V.; Wang, I.; Stelmakh, V.; Joannopoulos, J. D. Soljacic, M. Structural colors from Fano resonances. ACS Photonics 2015, 2, 27–32.

    Article  CAS  Google Scholar 

  27. Proust, J.; Bedu, F.; Gallas, B.; Ozerov, I.; Bonod, N. All-dielectric colored metasurfaces with silicon Mie resonators. ACS Nano 2016, 10, 7761–7767.

    Article  CAS  Google Scholar 

  28. Sun, S.; Zhou, Z. X.; Zhang, C.; Gao, Y. S.; Duan, Z. H.; Xiao, S. M.; Song, Q. H. All-dielectric full-color printing with TiO2 Metasurfaces. ACS Nano 2017, 11, 4445–4452.

    Article  CAS  Google Scholar 

  29. Yang, J. H.; Babicheva, V. E.; Yu, M. W.; Lu, T. C.; Lin, T. R.; Chen, K. P. Structural colors enabled by lattice resonance on silicon nitride metasurfaces. ACS Nano 2020, 14, 5678–5685.

    Article  CAS  Google Scholar 

  30. Kaliteevski, M.; Iorsh, I.; Brand, S.; Abram, R. A.; Chamberlain, J. M.; Kavokin, A. V.; Shelykh, I. A. Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror. Phys. Rev. B 2007, 76, 165415.

    Article  Google Scholar 

  31. Symonds, C.; Lheureux, G.; Hugonin, J. P.; Greffet, J. J.; Laverdant, J.; Brucoli, G.; Lemaitre, A.; Senellart, P.; Bellessa, J. Confined Tamm plasmon lasers. Nano Lett. 2013, 13, 3179–3184.

    Article  CAS  Google Scholar 

  32. Wang, Z. Y.; Clark, J. K.; Ho, Y. L.; Vilquin, B.; Daiguji, H.; Delaunay, J. J. Narrowband thermal emission realized through the coupling of cavity and Tamm Plasmon resonances. ACS Photonics 2018, 5, 2446–2452.

    Article  CAS  Google Scholar 

  33. Liu, X. X.; Li, Z. W.; Wen, Z. J.; Wu, M. F.; Lu, J. L.; Chen, X.; Zhao, X. C.; Wang, T.; Ji, R. N.; Zhang, Y. F. et al. Large-area, lithography-free, narrow-band and highly directional thermal emitter. Nanoscale 2019, 11, 19742–19750.

    Article  CAS  Google Scholar 

  34. Wang, Z. Y.; Clark, J. K.; Ho, Y. L.; Delaunay, J. J. Hot-electron photodetector with wavelength selectivity in near-infrared via Tamm plasmon. Nanoscale 2019, 11, 17407–17414.

    Article  CAS  Google Scholar 

  35. Lu, H.; Li, Y. W.; Yue, Z. J.; Mao, D.; Zhao, J. L. Topological insulator based Tamm plasmon polaritons. APL Photonics 2019, 4, 040801.

    Article  Google Scholar 

  36. Tsurimaki, Y.; Tong, J. K.; Boriskin, V. N.; Semenov, A.; Ayzatsky, M. I.; Machekhin, Y. P.; Chen, G.; Boriskina, S. V. Topological engineering of interfacial optical Tamm states for highly sensitive near-singular-phase optical detection. ACS Photonics 2018, 5, 929–938.

    Article  CAS  Google Scholar 

  37. Yang, Z. Y.; Ishii, S.; Yokoyama, T.; Dao, T. D.; Sun, M. G.; Pankin, P. S.; Timofeev, I. V.; Nagao, T.; Chen, K. P. Narrowband wavelength selective thermal emitters by confined Tamm plasmon polaritons. ACS Photonics 2017, 4, 2212–2219.

    Article  CAS  Google Scholar 

  38. Lundt, N.; Klembt, S.; Cherotchenko, E.; Betzold, S.; Iff, O.; Nalitov, A. V.; Klaas, M.; Dietrich, C. P.; Kavokin, A. V.; Höfling, S. et al. Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer. Nat. Commun. 2016, 7, 13328.

    Article  CAS  Google Scholar 

  39. Ciesielski, A.; Skowronski, L.; Trzcinski, M.; Szoplik, T. Controlling the optical parameters of self-assembled silver films with wetting layers and annealing. Appl. Surf. Sci. 2017, 421, 349–356.

    Article  CAS  Google Scholar 

  40. Joe, Y. S.; Satanin, A. M.; Kim, C. S. Classical analogy of Fano resonances. Phys. Scr. 2006, 74, 259–266.

    Article  CAS  Google Scholar 

  41. Zhou, H. C.; Yang, G.; Wang, K.; Long, H.; Lu, P. X. Coupled optical Tamm states in a planar dielectric mirror structure containing a thin metal film. Chin. Phys. Lett. 2012, 29, 067101.

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (NSFC) (No. 11874376), Shanghai Science and Technology Foundations (Nos. 19DZ2293400, 19ZR1465900, and 21WZ2504800), Shanghai Municipal Science and Technology Major Project (No. 2019SHZDZX01) and the Chinese Academy of Sciences President’s International Fellowship Initiative (Nos. 2020VTA0009, 2020PT0020, and 2021PT0007). And thanks to the support of Soft Matter Nanofab (No. SMN180827), Analytical Instrumentation Center (No. #SPST-AIC10112914) (SPST, ShanghaiTech University).

Author information

Authors and Affiliations

Authors

Contributions

S. W. W. and Q. Q. L. conceived the idea. Q. Q. L. performed the theory. X. C. Z., X. L. Z., and Q. Q. L. fabricated the filter. T. L. provided the InGaAs detector. Q. Q. L. and C. L. L. performed the imaging experiments. S. W. W. and W. L. organized the project, analyzed the results, and provided support. W. L., S. W. W., Q. Q. L., X. C. Z., and C. L. L. contributed to the preparation of the manuscript.

Corresponding authors

Correspondence to Shaowei Wang or Wei Lu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Zhao, X., Li, C. et al. Coupled Tamm plasmon polaritons induced narrow bandpass filter with ultra-wide stopband. Nano Res. 15, 4563–4568 (2022). https://doi.org/10.1007/s12274-021-4064-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-4064-x

Keywords

Navigation