Skip to main content
Log in

Non-noble metal-based amorphous high-entropy oxides as efficient and reliable electrocatalysts for oxygen evolution reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Exploring high-performance and cost-effective electrocatalysts that are applicable in oxygen evolution reaction (OER) is crucial for water splitting and energy storage. In this work, a facile and scalable chemical reduction strategy is developed to synthesize FeCoNiPB non-noble metal-based amorphous high-entropy oxides for the OER in alkaline media. The FeCoNiPB oxides exhibit overpotentials of 235 and 306 mV at current densities of 10 and 100 mA/cm2, respectively, as well as a small Tafel slope of 53 mV/dec in 1.0 M KOH solution, outperforming the performance of FeCoPB, FeNiPB, and CoNiPB oxides and the commercial RuO2, while maintaining excellent stability with negligible overpotential amplification over 40 h. The superior OER electrocatalytic efficiency and stability of the FeCoNiPB catalyst is primarily attributed to its unique amorphous high-entropy nanostructure, synergistic effect of the multiple components, and in situ-formed amorphous sheets with a thin (FeCoNi)OOH crystalline layer on the edge during long-term OER. This work provides new insights to design and prepare low-cost, highly efficient, and durable OER electrocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ghoniem, A. F. Needs, resources and climate change: Clean and efficient conversion technologies. Prog. Energy Combust. Sci. 2011, 37, 15–51.

    Article  CAS  Google Scholar 

  2. Zeng, M.; Li, Y. G. Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 2015, 3, 14942–14962.

    Article  CAS  Google Scholar 

  3. Santos, D. M. F.; Sequeira, C. A. C.; Figueiredo, J. L. Hydrogen production by alkaline water electrolysis. Quim. Nova 2013, 36, 1176–1193.

    Article  CAS  Google Scholar 

  4. Qi, J.; Zhang, W.; Cao, R. Solar-to-hydrogen energy conversion based on water splitting. Adv. Energy Mater. 2018, 8, 1701620.

    Article  Google Scholar 

  5. Liu, G.; He, D. Y.; Yao, R.; Zhao, Y.; Li, J. P. Amorphous NiFeB nanoparticles realizing highly active and stable oxygen evolving reaction for water splitting. Nano Res. 2018, 11, 1664–1675.

    Article  CAS  Google Scholar 

  6. Wang, Z. L.; Xu, D.; Xu, J. J.; Zhang, X. B. Oxygen electrocatalysts in metal-air batteries: From aqueous to nonaqueous electrolytes. Chem. Soc. Rev. 2014, 43, 7746–7786.

    Article  CAS  Google Scholar 

  7. Fu, J.; Cano, Z. P.; Park, M. G.; Yu, A. P.; Fowler, M.; Chen, Z. W. Electrically rechargeable zinc-air batteries: Progress, challenges, and perspectives. Adv. Mater. 2017, 29, 1604685.

    Article  Google Scholar 

  8. Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

    Article  CAS  Google Scholar 

  9. Glasscott, M. W.; Pendergast, A. D.; Goines, S.; Bishop, A. R.; Hoang, A. T.; Renault, C.; Dick, J. E. Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis. Nat. Commun. 2019, 10, 2650.

    Article  Google Scholar 

  10. Jia, Z.; Yang, T.; Sun, L. G.; Zhao, Y. L.; Li, W. P.; Luan, J. H.; Lyu, F. C.; Zhang, L. C.; Kruzic, J. J.; Kai, J. J. et al. A novel multinary intermetallic as an active electrocatalyst for hydrogen evolution. Adv. Mater. 2020, 32, 2000385.

    Article  CAS  Google Scholar 

  11. Ju, S.; Feng, J. Q.; Zou, P.; Xu, W.; Wang, S. J.; Gao, W. B.; Qiu, H. J.; Huo, J. T.; Wang, J. Q. A robust self-stabilized electrode based on Al-based metallic glasses for a highly efficient hydrogen evolution reaction. J. Mater. Chem. A 2020, 8, 3246–3251.

    Article  CAS  Google Scholar 

  12. Batchelor, T. A. A.; Pedersen, J. K.; Winther, S. H.; Castelli, I. E.; Jacobsen, K. W.; Rossmeisl, J. High-entropy alloys as a discovery platform for electrocatalysis. Joule 2019, 3, 834–845.

    Article  CAS  Google Scholar 

  13. Löffler, T.; Savan, A.; Garzón-Manjón, A.; Meischein, M.; Scheu, C.; Ludwig, A.; Schuhmann, W. Toward a paradigm shift in electrocatalysis using complex solid solution nanoparticles. ACS Energy Lett. 2019, 4, 1206–1214.

    Article  Google Scholar 

  14. Zhao, X. H.; Xue, Z. M.; Chen, W. J.; Wang, Y. Q.; Mu, T. C. Eutectic synthesis of high-entropy metal phosphides for electrocatalytic water splitting. ChemSusChem 2020, 13, 2038–2042.

    Article  CAS  Google Scholar 

  15. Gludovatz, B.; Hohenwarter, A.; Catoor, D.; Chang, E. H.; George, E. P.; Ritchie, R. O. A fracture-resistant high-entropy alloy for cryogenic applications. Science 2014, 345, 1153–1158.

    Article  CAS  Google Scholar 

  16. Jin, Z. Y.; Lv, J.; Jia, H. L.; Liu, W. H.; Li, H. L.; Chen, Z. H.; Lin, X.; Xie, G. Q.; Liu, X. J.; Sun, S. H. et al. Nanoporous Al-Ni-Co-Ir-Mo high-entropy alloy for record-high water splitting activity in acidic environments. Small 2019, 15, 1904180.

    Article  CAS  Google Scholar 

  17. Qiu, H. J.; Fang, G.; Gao, J. J.; Wen, Y. R.; Lv, J.; Li, H. L.; Xie, G. Q.; Liu, X. J.; Sun, S. H. Noble metal-free nanoporous high-entropy alloys as highly efficient electrocatalysts for oxygen evolution reaction. ACS Mater. Lett. 2019, 1, 526–533.

    Article  CAS  Google Scholar 

  18. Sharma, L.; Katiyar, N. K.; Parui, A.; Das, R.; Kumar, R.; Tiwary, C. S.; Singh, A. K.; Halder, A.; Biswas, K. Low-cost high entropy alloy (HEA) for high-efficiency oxygen evolution reaction (OER). Nano Res., in press, https://doi.org/10.1007/s12274-021-3802-4.

  19. Li, H. D.; Han, Y.; Zhao, H.; Qi, W. J.; Zhang, D.; Yu, Y. D.; Cai, W. W.; Li, S. X.; Lai, J. P.; Huang, B. L. et al. Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis. Nat. Commun. 2020, 11, 5437.

    Article  CAS  Google Scholar 

  20. Zhang, Y.; Lu, T.; Ye, Y. K.; Dai, W. J.; Zhu, Y. A.; Pan, Y. Stabilizing oxygen vacancy in entropy-engineered CoFe2O4-type catalysts for Co-prosperity of efficiency and stability in an oxygen evolution reaction. ACS Appl. Mater. Interfaces 2020, 12, 32548–32555.

    Article  CAS  Google Scholar 

  21. Hu, Y. C.; Wang, Y. Z.; Su, R.; Cao, C. R.; Li, F.; Sun, C. W.; Yang, Y.; Guan, P. F.; Ding, D. W.; Wang, Z. L. et al. A highly efficient and self-stabilizing metallic-glass catalyst for electrochemical hydrogen generation. Adv. Mater. 2016, 28, 10293–10297.

    Article  CAS  Google Scholar 

  22. Miao, F.; Wang, Q. Q.; Zhang, L. C.; Shen, B. L. Magnetically separable Z-scheme FeSiB metallic glass/g-C3N4 heterojunction photocatalyst with high degradation efficiency at universal pH conditions. Appl. Surf. Sci. 2021, 540, 148401.

    Article  CAS  Google Scholar 

  23. Tan, Y. W.; Zhu, F.; Wang, H.; Tian, Y.; Hirata, A.; Fujita, T.; Chen, M. W. Noble-metal-free metallic glass as a highly active and stable bifunctional electrocatalyst for water splitting. Adv. Mater. Interfaces 2017, 4, 1601086.

    Article  Google Scholar 

  24. Li, R.; Liu, X. J.; Wu, R. Y.; Wang, J.; Li, Z. B.; Chan, K. C.; Wang, H.; Wu, Y.; Lu, Z. P. Flexible honeycombed nanoporous/glassy hybrid for efficient electrocatalytic hydrogen generation. Adv. Mater. 2019, 31, 1904989.

    Article  CAS  Google Scholar 

  25. Wang, Z. J.; Li, M. X.; Yu, J. H.; Ge, X. B.; Liu, Y. H.; Wang, W. H. Low-iridium-content IrNiTa metallic glass films as intrinsically active catalysts for hydrogen evolution reaction. Adv. Mater. 2020, 32, 1906384.

    Article  CAS  Google Scholar 

  26. Jia, Z.; Duan, X. G.; Qin, P.; Zhang, W. C.; Wang, W. M.; Yang, C.; Sun, H. Q.; Wang, S. B.; Zhang, L. C. Disordered atomic packing structure of metallic glass: Toward ultrafast hydroxyl radicals production rate and strong electron transfer ability in catalytic performance. Adv. Funct. Mater. 2017, 27, 1702258.

    Article  Google Scholar 

  27. Zhang, L. C.; Jia, Z.; Lyu, F. C.; Liang, S. X.; Lu, J. A review of catalytic performance of metallic glasses in wastewater treatment: Recent progress and prospects. Prog. Mater. Sci. 2019, 105, 100576.

    Article  CAS  Google Scholar 

  28. Li, B.; Chen, S. M.; Tian, J.; Gong, M.; Xu, H. X.; Song, L. Amorphous nickel-iron oxides/carbon nanohybrids for an efficient and durable oxygen evolution reaction. Nano Res. 2017, 10, 3629–3637.

    Article  CAS  Google Scholar 

  29. Johny, J.; Li, Y.; Kamp, M.; Prymak, O.; Liang, S. X.; Krekeler, T.; Ritter, M.; Kienle, L.; Rehbock, C.; Barcikowski, S. et al. Lasergenerated high entropy metallic glass nanoparticles as bifunctional electrocatalysts. Nano Res., in press, https://doi.org/10.1007/s12274-021-3804-2.

  30. Hu, F.; Zhu, S. L.; Chen, S. M.; Li, Y.; Ma, L.; Wu, T. P.; Zhang, Y.; Wang, C. M.; Liu, C. C.; Yang, X. J. et al. Amorphous metallic NiFeP: A conductive bulk material achieving high activity for oxygen evolution reaction in both alkaline and acidic media. Adv. Mater. 2017, 29, 1606570.

    Article  Google Scholar 

  31. Zhang, F. B.; Wu, J. L.; Jiang, W.; Hu, Q. Z.; Zhang, B. New and efficient electrocatalyst for hydrogen production from water splitting: Inexpensive, robust metallic glassy ribbons based on iron and cobalt. ACS Appl. Mater. Interfaces 2017, 9, 31340–31344.

    Article  CAS  Google Scholar 

  32. Li, S. M.; Yang, X. H.; Yang, S. Y.; Gao, Q. Z.; Zhang, S. S.; Yu, X. Y.; Fang, Y. P.; Yang, S. H.; Cai, X. An amorphous trimetallic (Ni-Co-Fe) hydroxide-sheathed 3D bifunctional electrode for superior oxygen evolution and high-performance cable-type flexible zinc-air batteries. J. Mater. Chem. A 2020, 8, 5601–5611.

    Article  CAS  Google Scholar 

  33. Lee, S.; Banjac, K.; Lingenfelder, M.; Hu, X. L. Oxygen isotope labeling experiments reveal different reaction sites for the oxygen evolution reaction on nickel and nickel iron oxides. Angew. Chem., Int. Ed. 2019, 58, 10295–10299.

    Article  CAS  Google Scholar 

  34. Kibsgaard, J.; Chorkendorff, I. Considerations for the scaling-up of water splitting catalysts. Nat. Energy 2019, 4, 430–433.

    Article  Google Scholar 

  35. Zeng, Y. Q.; Yu, J. S.; Tian, Y.; Hirata, A.; Fujita, T.; Zhang, X. H.; Nishiyama, N.; Kato, H.; Jiang, J. Q.; Inoue, A. et al. Improving glass forming ability of off-eutectic metallic glass formers by manipulating primary crystallization reactions. Acta Mater. 2020, 200, 710–719.

    Article  CAS  Google Scholar 

  36. Wu, Z. X.; Nie, D. Z.; Song, M.; Jiao, T. T.; Fu, G. T.; Liu, X. E. Facile synthesis of Co-Fe-B-P nanochains as an efficient bifunctional electrocatalyst for overall water-splitting. Nanoscale 2019, 11, 7506–7512.

    Article  CAS  Google Scholar 

  37. Zhang, B.; Zheng, X. L.; Voznyy, O.; Comin, R.; Bajdich, M.; García-Melchor, M.; Han, L. L.; Xu, J. X.; Liu, M.; Zheng, L. R. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 2016, 352, 333–337.

    Article  CAS  Google Scholar 

  38. Wu, Y. H.; Lian, J. Q.; Wang, Y. X.; Sun, J. J.; He, Z.; Gu, Z. J. Potentiostatic electrodeposition of self-supported Ni-S electrocatalyst supported on Ni foam for efficient hydrogen evolution. Mater. Des. 2021, 198, 109316.

    Article  CAS  Google Scholar 

  39. Zhang, X.; Zhang, X.; Xu, H. M.; Wu, Z. S.; Wang, H. L.; Liang, Y. Y. Iron-doped cobalt monophosphide nanosheet/carbon nanotube hybrids as active and stable electrocatalysts for water splitting. Adv. Funct. Mater. 2017, 27, 1606635.

    Article  Google Scholar 

  40. Tang, W. K.; Liu, X. F.; Li, Y.; Pu, Y. H.; Lu, Y.; Song, Z. M.; Wang, Q.; Yu, R. H.; Shui, J. L. Boosting electrocatalytic water splitting via metal-metalloid combined modulation in quaternary Ni-Fe-P-B amorphous compound. Nano Res. 2020, 13, 447–454.

    Article  CAS  Google Scholar 

  41. Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2013, 135, 9267–9270.

    Article  CAS  Google Scholar 

  42. Chunduri, A.; Gupta, S.; Bapat, O.; Bhide, A.; Fernandes, R.; Patel, M. K.; Bambole, V.; Miotello, A.; Patel, N. A unique amorphous cobalt-phosphide-boride bifunctional electrocatalyst for enhanced alkaline water-splitting. Appl. Catal. B:Environ. 2019, 259, 118051.

    Article  CAS  Google Scholar 

  43. Zhang, P. L.; Wang, M.; Yang, Y.; Yao, T. Y.; Han, H. X.; Sun, L. C. Electroless plated Ni-Bx films as highly active electrocatalysts for hydrogen production from water over a wide pH range. Nano Energy 2016, 19, 98–107.

    Article  CAS  Google Scholar 

  44. Löffler, T.; Waag, F.; Gökce, B.; Ludwig, A.; Barcikowski, S.; Schuhmann, W. Comparing the activity of complex solid solution electrocatalysts using inflection points of voltammetric activity curves as activity descriptors. ACS Catal. 2021, 11, 1014–1023.

    Article  Google Scholar 

  45. Waag, F.; Li, Y.; Ziefuß, A. R.; Bertin, E.; Kamp, M.; Duppel, V.; Marzun, G.; Kienle, L.; Barcikowski, S.; Gökce, B. Kinetically-controlled laser-synthesis of colloidal high-entropy alloy nanoparticles. RSC Adv. 2019, 9, 18547–18558.

    Article  CAS  Google Scholar 

  46. Jiang, S. D.; Tian, K. H.; Li, X. L.; Duan, C. Q.; Wang, D.; Wang, Z. Y.; Sun, H. Y.; Zheng, R. G.; Liu, Y. G. Amorphous high-entropy non-precious metal oxides with surface reconstruction toward highly efficient and durable catalyst for oxygen evolution reaction. J. Colloid Interface Sci. 2022, 606, 635–644.

    Article  CAS  Google Scholar 

  47. Elgrishi, N.; Rountree, K. J.; McCarthy, B. D.; Rountree, E. S.; Eisenhart, T. T.; Dempsey, J. L. A practical beginner’s guide to cyclic voltammetry. J. Chem. Educ. 2018, 95, 197–206.

    Article  CAS  Google Scholar 

  48. Jia, Z.; Nomoto, K.; Wang, Q.; Kong, C.; Sun, L. G.; Zhang, L. C.; Liang, S. X.; Lu, J.; Kruzic, J. J. A self-supported high-entropy metallic glass with a nanosponge architecture for efficient hydrogen evolution under alkaline and acidic conditions. Adv. Funct. Mater. 2021, 31, 2101586.

    Article  CAS  Google Scholar 

  49. Nsanzimana, J. M. V.; Dangol, R.; Reddu, V.; Duo, S.; Peng, Y. C.; Dinh, K. N.; Huang, Z. F.; Yan, Q. Y.; Wang, X. Facile synthesis of amorphous ternary metal borides-reduced graphene oxide hybrid with superior oxygen evolution activity. ACS Appl. Mater. Interfaces 2019, 11, 846–855.

    Article  CAS  Google Scholar 

  50. Wang, X. X.; She, G. W.; Mu, L. X.; Shi, W. S. Amorphous Co-Mo-P-O bifunctional electrocatalyst via facile electrodeposition for overall water splitting. ACS Sustainable Chem. Eng. 2020, 8, 2835–2842.

    Article  CAS  Google Scholar 

  51. Jiang, N.; You, B.; Sheng, M. L.; Sun, Y. J. Electrodeposited cobalt-phosphorous-derived films as competent bifunctional catalysts for overall water splitting. Angew. Chem., Int. Ed. 2015, 54, 6251–6254.

    Article  CAS  Google Scholar 

  52. Xu, M.; Han, L.; Han, Y. J.; Yu, Y.; Zhai, J. F.; Dong, S. J. Porous CoP concave polyhedron electrocatalysts synthesized from metal-organic frameworks with enhanced electrochemical properties for hydrogen evolution. J. Mater. Chem. A 2015, 3, 21471–21477.

    Article  CAS  Google Scholar 

  53. Zhang, N.; Feng, X. B.; Rao, D. W.; Deng, X.; Cai, L. J.; Qiu, B. C.; Long, R.; Xiong, Y. J.; Lu, Y.; Chai, Y. Lattice oxygen activation enabled by high-valence metal sites for enhanced water oxidation. Nat. Commun. 2020, 11, 4066.

    Article  CAS  Google Scholar 

  54. Guo, L. S.; Yu, B. X.; Zhou, P.; Zhang, T.; Wang, F. H. Fabrication of low-cost Ni-P composite coating on Mg alloys with a significant improvement of corrosion resistance: Critical role of mitigating the galvanic contact between the substrate and the coating. Corros. Sci. 2021, 183, 109329.

    Article  CAS  Google Scholar 

  55. Jia, Z.; Wang, Q.; Sun, L. G.; Wang, Q.; Zhang, L. C.; Wu, G.; Luan, J. H.; Jiao, Z. B.; Wang, A. D.; Liang, S. X. et al. Attractive in situ self-reconstructed hierarchical gradient structure of metallic glass for high efficiency and remarkable stability in catalytic performance. Adv. Funct. Mater. 2019, 29, 1807857.

    Article  Google Scholar 

  56. Chen, R.; Wang, H. Y.; Miao, J. W.; Yang, H. B.; Liu, B. A flexible high-performance oxygen evolution electrode with three-dimensional NiCo2O4 core—shell nanowires. Nano Energy 2015, 11, 333–340.

    Article  CAS  Google Scholar 

  57. Zhao, S. L.; Wang, Y.; Dong, J. C.; He, C. T.; Yin, H. J.; An, P. F.; Zhao, K.; Zhang, X. F.; Gao, C.; Zhang, L. J. et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 2016, 1, 16184.

    Article  CAS  Google Scholar 

  58. Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383–1385.

    Article  CAS  Google Scholar 

  59. Wang, Y. Y.; Qiao, M.; Li, Y. F.; Wang, S. Y. Tuning surface electronic configuration of NiFe LDHs nanosheets by introducing cation vacancies (Fe or Ni) as highly efficient electrocatalysts for oxygen evolution reaction. Small 2018, 14, 1800136.

    Article  Google Scholar 

  60. Xu, Z. J. Transition metal oxides for water oxidation: All about oxyhydroxides? Sci. China Mater. 2020, 63, 3–7.

    Article  CAS  Google Scholar 

  61. Bediako, D. K.; Lassalle-Kaiser, B.; Surendranath, Y.; Yano, J.; Yachandra, V. K.; Nocera, D. G. Structure-activity correlations in a nickel-borate oxygen evolution catalyst. J. Am. Chem. Soc. 2012, 134, 6801–6809.

    Article  CAS  Google Scholar 

  62. Bediako, D. K.; Surendranath, Y.; Nocera, D. G. Mechanistic studies of the oxygen evolution reaction mediated by a nickel-borate thin film electrocatalyst. J. Am. Chem. Soc. 2013, 135, 3662–3674.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51631003) and the Natural Science Foundation of Jiangsu Province (No. BK20191269).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baolong Shen.

Electronic Supplementary Material

12274_2022_4179_MOESM1_ESM.pdf

Non-noble metal-based amorphous high-entropy oxides as efficient and reliable electrocatalysts for oxygen evolution reaction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Li, J., Li, Y. et al. Non-noble metal-based amorphous high-entropy oxides as efficient and reliable electrocatalysts for oxygen evolution reaction. Nano Res. 15, 8751–8759 (2022). https://doi.org/10.1007/s12274-022-4179-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4179-8

Keywords

Navigation