Skip to main content
Log in

Stabilizing photo-induced vacancy defects in MOF matrix for high-performance SERS detection

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Photo-induced vacancy defects are employed strategically to imbue semiconductors with enhanced performance characteristics for many important applications such as surface-enhanced Raman scattering (SERS) sensing, photocatalysis, and photovoltaic applications. However, the long-term maintenance and use of photo-induced vacancy defects remain elusive, because of their rapid self-healing upon air exposure. In this study, we demonstrate that photo-induced oxygen vacancy (PIVO) defects can be stabilized by the photoexcitation of metal-organic framework (MOF) materials, which is crucial for SERS analysis. The PIVO defects in MOF materials are stable for at least two weeks in the ambient atmosphere, owing to the combination of steric hindrance and electron delocalization around vacancy defects, which significantly contrasts the short lifetime (within minutes) of PIVO defects in metal-oxide semiconductors. With the formation of stable PIVO defects, a prominent SERS enhancement surpassing that of pristine MOFs is achieved, accompanied with a reduced limit of detection by three orders of magnitude. Moreover, the additional SERS enhancement rendered by PIVO defects can be stably retained and is effective for monitoring various small molecules, such as dopamine and bisphenol A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Queisser, H. J.; Haller, E. E. Defects in semiconductors: Some fatal, some vital. Science 1998, 281, 945–950.

    Article  CAS  Google Scholar 

  2. Li, Y. F.; Aschauer, U.; Chen, J.; Selloni, A. Adsorption and reactions of O2 on anatase TiO2. Acc. Chem. Res. 2014, 47, 3361–3368.

    Article  CAS  Google Scholar 

  3. Maletinsky, P.; Hong, S.; Grinolds, M. S.; Hausmann, B.; Lukin, M. D.; Walsworth, R. L.; Loncar, M.; Yacoby, A. A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. Nat. Nanotechnol. 2012, 7, 320–324.

    Article  CAS  Google Scholar 

  4. Sun, Y. F.; Gao, S.; Lei, F. C.; Xie, Y. Atomically-thin two-dimensional sheets for understanding active sites in catalysis. Chem. Soc. Rev. 2015, 44, 623–636.

    Article  CAS  Google Scholar 

  5. Wang, X. T.; Shi, W. X.; Wang, S. X.; Zhao, H. W.; Lin, J.; Yang, Z.; Chen, M.; Guo, L. Two-dimensional amorphous TiO2 nanosheets enabling high-efficiency photoinduced charge transfer for excellent SERS activity. J. Am. Chem. Soc. 2019, 141, 5856–5862.

    Article  CAS  Google Scholar 

  6. Wang, X. T.; Shi, W. X.; Jin, Z.; Huang, W. F.; Lin, J.; Ma, G. S.; Li, S. Z.; Guo, L. Remarkable SERS activity observed from amorphous ZnO nanocages. Angew. Chem., Int. Ed. 2017, 56, 9851–9855.

    Article  CAS  Google Scholar 

  7. Tao, J. G.; Luttrell, T.; Batzill, M. A two-dimensional phase of TiO2 with a reduced bandgap. Nat. Chem. 2011, 3, 296–300.

    Article  CAS  Google Scholar 

  8. Zhou, Z. H.; Liu, J.; Long, R.; Li, L. Q.; Guo, L. J.; Prezhdo, O. V. Control of charge carriers trapping and relaxation in hematite by oxygen vacancy charge: Ab initio non-adiabatic molecular dynamics. J. Am. Chem. Soc. 2017, 139, 6707–6717.

    Article  CAS  Google Scholar 

  9. Lin, J.; Shang, Y.; Li, X. X.; Yu, J.; Wang, X. T.; Guo, L. Ultrasensitive SERS detection by defect engineering on single Cu2O superstructure particle. Adv. Mater. 2017, 29, 1604797.

    Article  Google Scholar 

  10. Song, G.; Gong, W. B.; Cong, S.; Zhao, Z. G. Ultrathin two-dimensional nanostructures: Surface defects for morphology-driven enhanced semiconductor SERS. Angew. Chem., Int. Ed. 2021, 133, 5565–5571.

    Article  Google Scholar 

  11. Cong, S.; Yuan, Y. Y.; Chen, Z. G.; Hou, J. Y.; Yang, M.; Su, Y. L.; Zhang, Y. Y.; Li, L.; Li, Q. W.; Geng, F. X. et al. Noble metal-comparable SERS enhancement from semiconducting metal oxides by making oxygen vacancies. Nat. Commun. 2015, 6, 7800.

    Article  CAS  Google Scholar 

  12. Redfield, D.; Bube, R. H. Photo-Induced Defects in Semiconductors; Cambridge University Press: Cambridge, 1996.

    Book  Google Scholar 

  13. Ben-Jaber, S.; Peveler, W. J.; Quesada-Cabrera, R.; Cortes, E.; Sotelo-Vazquez, C.; Abdul-Karim, N.; Maier, S. A.; Parkin, I. P. Photo-induced enhanced Raman spectroscopy for universal ultratrace detection of explosives, pollutants and biomolecules. Nat. Commun. 2016, 7, 12189.

    Article  CAS  Google Scholar 

  14. Onda, K.; Li, B.; Petek, H. Two-photon photoemission spectroscopy of TiO2(110) surfaces modified by defects and O2 or H2O adsorbates. Phys. Rev. B 2004, 70, 045415.

    Article  Google Scholar 

  15. Zhou, H. C.; Long, J. R.; Yaghi, O. M. Introduction to metal-organic frameworks. Chem. Rev. 2012, 112, 673–674.

    Article  CAS  Google Scholar 

  16. Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T. Metal-organic framework materials as chemical sensors. Chem. Rev. 2011, 112, 1105–1125.

    Article  Google Scholar 

  17. Yuan, S.; Feng, L.; Wang, K. C.; Pang, J. D.; Bosch, M.; Lollar, C.; Sun, Y. J.; Qin, J. S.; Yang, X. Y.; Zhang, P. et al. Stable metal-organic frameworks: Design, synthesis, and applications. Adv. Mater. 2018, 30, 1704303.

    Article  Google Scholar 

  18. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.

    Article  Google Scholar 

  19. He, L. C.; Liu, Y.; Liu, J. Z.; Xiong, Y. S.; Zheng, J. Z.; Liu, Y. L.; Tang, Z. Y. Core-shell noble-metal@metal-organic-framework nanoparticles with highly selective sensing property. Angew. Chem., Int. Ed. 2013, 52, 3741–3745.

    Article  CAS  Google Scholar 

  20. Sugikawa, K.; Nagata, S.; Furukawa, Y.; Kokado, K.; Sada, K. Stable and functional gold nanorod composites with a metal-organic framework crystalline shell. Chem. Mater. 2013, 25, 2565–2570.

    Article  CAS  Google Scholar 

  21. Horiuchi, Y.; Tatewaki, K.; Mine, S.; Kim, T. H.; Lee, S. W.; Matsuoka, M. Linker defect engineering for effective reactive site formation in metal-organic framework photocatalysts with a MIL-125(Ti) architecture. J. Catal. 2020, 392, 119–125.

    Article  CAS  Google Scholar 

  22. Aubrey, M. L.; Wiers, B. M.; Andrews, S. C.; Sakurai, T.; Reyes-Lillo, S. E.; Hamed, S. M.; Yu, C. J.; Darago, L. E.; Mason, J. A.; Baeg, J. O. et al. Electron delocalization and charge mobility as a function of reduction in a metal-organic framework. Nat. Mater. 2018, 17, 625–632.

    Article  CAS  Google Scholar 

  23. Huang, Q. W.; Tian, S. Q.; Zeng, D. W.; Wang, X. X.; Song, W. L.; Li, Y. Y.; Xiao, W.; Xie, C. S. Enhanced photocatalytic activity of chemically bonded TiO2/graphene composites based on the effective interfacial charge transfer through the C−Ti bond. ACS Catal. 2013, 3, 1477–1485.

    Article  CAS  Google Scholar 

  24. Bangle, R.; Sampaio, R. N.; Troian-Gautier, L.; Meyer, G. J. Surface grafting of Ru(II) diazonium-based sensitizers on metal oxides enhances alkaline stability for solar energy conversion. ACS Appl. Mater. Interfaces 2018, 10, 3121–3132.

    Article  CAS  Google Scholar 

  25. Gao, P.; Li, S. G.; Bu, X. N.; Dang, S. S.; Liu, Z. Y.; Wang, H.; Zhong, L. S.; Qiu, M. H.; Yang, C. G.; Cai, J. et al. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst. Nat. Chem. 2017, 9, 1019–1024.

    Article  CAS  Google Scholar 

  26. Kang, J. X.; Zhang, Y.; Chai, Z. W.; Qiu, X. Y.; Cao, X. Z.; Zhang, P.; Teobaldi, G.; Liu, L. M.; Guo, L. Amorphous domains in black titanium dioxide. Adv. Mater. 2021, 33, 2100407.

    Article  CAS  Google Scholar 

  27. Lei, F. C.; Sun, Y. F.; Liu, K. T.; Gao, S.; Liang, L.; Pan, B. C.; Xie, Y. Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting. J. Am. Chem. Soc. 2014, 136, 6826–6829.

    Article  CAS  Google Scholar 

  28. Mao, C. L.; Cheng, H. G.; Tian, H.; Li, H.; Xiao, W. J.; Xu, H.; Zhao, J. C.; Zhang, L. Z. Visible light driven selective oxidation of amines to imines with BiOCl: Does oxygen vacancy concentration matter? Appl. Catal. B: Environ. 2018, 228, 87–96.

    Article  CAS  Google Scholar 

  29. Bai, S.; Zhang, N.; Gao, C.; Xiong, Y. J. Defect engineering in photocatalytic materials. Nano Energy 2018, 53, 296–336.

    Article  CAS  Google Scholar 

  30. Xiao, C.; Qin, X. M.; Zhang, J.; An, R.; Xu, J.; Li, K.; Cao, B. X.; Yang, J. L.; Ye, B. J.; Xie, Y. High thermoelectric and reversible p−n−p conduction type switching integrated in dimetal chalcogenide. J. Am. Chem. Soc. 2012, 134, 18460–18466.

    Article  CAS  Google Scholar 

  31. Liu, X. W.; Zhou, K. B.; Wang, L.; Wang, B. Y.; Li, Y. D. Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods. J. Am. Chem. Soc. 2009, 131, 3140–3141.

    Article  CAS  Google Scholar 

  32. Zhao, Y. F.; Jia, X. D.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; O’Hare, D.; Zhang, T. R. Layered double hydroxide nanostructured photocatalysts for renewable energy production. Adv. Energy Mater. 2016, 6, 1501974.

    Article  Google Scholar 

  33. De La Fuente-Fernández, R.; Ruth, T. J.; Sossi, V.; Schulzer, M.; Calne, D. B.; Stoessl, A. J. Expectation and dopamine release: Mechanism of the placebo effect in parkinson’s disease. Science 2001, 293, 1164–1166.

    Article  Google Scholar 

  34. Zhang, A.; Neumeyer, J. L.; Baldessarini, R. J. Recent progress in development of dopamine receptor subtype-selective agents: Potential therapeutics for neurological and psychiatric disorders. Chem. Rev. 2007, 107, 274–302.

    Article  CAS  Google Scholar 

  35. Ciubuc, J. D.; Bennet, K. E.; Qiu, C.; Alonzo, M.; Durrer, W. G.; Manciu, F. S. Raman computational and experimental studies of dopamine detection. Biosensors 2017, 7, 43.

    Article  Google Scholar 

  36. Musumeci, A.; Gosztola, D.; Schiller, T.; Dimitrijevic, N. M.; Mujica, V.; Martin, D.; Rajh, T. SERS of semiconducting nanoparticles (TiO2 hybrid composites). J. Am. Chem. Soc. 2009, 131, 6040–6041.

    Article  CAS  Google Scholar 

  37. Alessandri, I.; Lombardi, J. R. Enhanced Raman scattering with dielectrics. Chem. Rev. 2016, 116, 14921–14981.

    Article  CAS  Google Scholar 

  38. Lombardi, J. R.; Birke, R. L. A unified view of surface-enhanced Raman scattering. Acc. Chem. Res. 2009, 42, 734–742.

    Article  CAS  Google Scholar 

  39. Lombardi, J. R.; Birke, R. L. Theory of surface-enhanced Raman scattering in semiconductors. J. Phys. Chem. C 2014, 118, 11120–11130.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the financial supports from the National Key Research and Development Program of China (No. 2020YFB1505703). This work was supported by the National Natural Science Foundation of China (Nos. 52172299, 22175198, 51772319, 51772320, and 51972331). Z. G. Z would like to acknowledge the support from the External Cooperation Program of the Chinese Academy of Sciences (No. 121E32KYSB20190008), Six Talent Peaks Project of Jiangsu Province (No. XCL-170). S. C would like to acknowledge the support from the Youth Innovation Promotion Association, CAS (No. 2018356) and the Outstanding Youth Fund of Jiangxi (No. 20192BCBL23027).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shan Cong or Zhigang Zhao.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Song, G., Gong, W. et al. Stabilizing photo-induced vacancy defects in MOF matrix for high-performance SERS detection. Nano Res. 15, 5347–5354 (2022). https://doi.org/10.1007/s12274-022-4185-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4185-x

Keywords

Navigation