Skip to main content
Log in

Fine-tune chiroptical activity in discrete chiral Au nanorods

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Accurate researches on the surface plasmon resonance (SPR)-based applications of chiral plasmonic metal nanoparticles (NPs) still remain a great challenge. Herein, a series of chiral plasmonic metal NPs, e.g., chiral Au nanorods (c-Au NRs), c-Au@Ag core—shell, and c-Au@TiO2 core—shell NRs, with different chiroptical activities have been produced. Plasmonic circular dichroism (PCD) bands of c-Au NRs can be precisely tailored by tuning the longitudinal SPR (LSPR) and amount of Au NRs as seeds. Besides, a shift of PCD bands within ultraviolet—visible—near infrared ray (UV—vis—NIR) region can also be achieved through the functionalization of a shell of another metal or semiconductor. Interestingly, chirality transfer from c-Au core to Ag shell leads to new PCD bands at the near-UV region. The tuning of PCD bands and chirality transfer are confirmed by our developed theoretical model. Developing chiral Au NRs-based chiral plasmonic nanomaterials with tunable chiroptical activities will be helpful to understand the structure-direct PCD and to extend circularly polarized-based applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L. M.; Mulvaney, P. Gold nanorods: Synthesis, characterization and applications. Coordin. Chem. Rev. 2005, 249, 1870–1901.

    Article  Google Scholar 

  2. Zheng, G. C.; Pastoriza-Santos, I.; Pérez-Juste, J.; Liz-Marzán, L. M. Plasmonic metal—organic frameworks. SmartMat 2021, 2, 446–465.

    Article  CAS  Google Scholar 

  3. Jana, N. R.; Gearheart, L.; Murphy, C. J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J. Phys. Chem. B 2001, 105, 4065–4067.

    Article  CAS  Google Scholar 

  4. Pérez-Juste, J.; Liz-Marzán, L. M.; Carnie, S.; Chan, D. Y. C.; Mulvaney, P. Electric-field-directed growth of gold nanorods in aqueous surfactant solutions. Adv. Funct. Mater. 2004, 14, 571–579.

    Article  Google Scholar 

  5. Nikoobakht, B.; El-Sayed, M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 2003, 15, 1957–1962.

    Article  CAS  Google Scholar 

  6. González-Rubio, G.; Díaz-núñez, P.; Rivera, A.; Prada, A.; Tardajos, G.; González-Izquierdo, J.; Bañares, L.; Llombart, P.; Macdowell, L. G.; Palafox, M. A. et al. Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances. Science 2017, 358, 640–644.

    Article  Google Scholar 

  7. Sepúlveda, B.; Angelomé, P. C.; Lechuga, L. M.; Liz-Marzán, L. M. LSPR-based nanobiosensors. Nano Today 2009, 4, 244–251.

    Article  Google Scholar 

  8. Mukherjee, S.; Libisch, F.; Large, N.; Neumann, O.; Brown, L. V.; Cheng, J.; Lassiter, J. B.; Carter, E. A.; Nordlander, P.; Halas, N. J. Hot electrons do the impossible: Plasmon-induced dissociation of H2 on Au. Nano Lett. 2013, 13, 240–247.

    Article  CAS  Google Scholar 

  9. Ali, M. R. K.; Wu, Y.; Tang, Y.; Xiao, H. P.; Chen, K. C.; Han, T. G.; Fang, N.; Wu, R. H.; El-Sayed, M. A. Targeting cancer cell integrins using gold nanorods in photothermal therapy inhibits migration through affecting cytoskeletal proteins. Proc. Natl. Acad. Sci. USA 2017, 114, E5655–E5663.

    Article  CAS  Google Scholar 

  10. Ye, W. X.; Celiksoy, S.; Jakab, A.; Khmelinskaia, A.; Heermann, T.; Raso, A.; Wegner, S. V.; Rivas, G.; Schwille, P.; Ahijado-Guzmán, R. et al. Plasmonic nanosensors reveal a height dependence of MinDE protein oscillations on membrane features. J. Am. Chem. Soc. 2018, 140, 17901–17906.

    Article  CAS  Google Scholar 

  11. Zheng, G. C.; He, J. J.; Kumar, V.; Wang, S. L.; Pastoriza-Santos, I.; Pérez-Juste, J.; Liz-Marzán, L. M.; Wong, K. Y. Discrete metal nanoparticles with plasmonic chirality. Chem. Soc. Rev. 2021, 50, 3738–3754.

    Article  CAS  Google Scholar 

  12. Klös, G.; Andersen, A.; Miola, M.; Birkedal, H.; Sutherland, D. S. Oxidation controlled lift-off of 3D chiral plasmonic Au nano-hooks. Nano Res. 2019, 12, 1635–1642.

    Article  Google Scholar 

  13. Ni, B.; Cölfen, H. Chirality communications between inorganic and organic compounds. SmartMat 2021, 2, 17–32.

    Article  Google Scholar 

  14. Han, Z.; Zhao, X. L.; Peng, P.; Li, S.; Zhang, C.; Cao, M.; Li, K.; Wang, Z. Y.; Zang, S. Q. Intercluster aurophilicity-driven aggregation lighting circularly polarized luminescence of chiral gold clusters. Nano Res. 2020, 13, 3248–3252.

    Article  CAS  Google Scholar 

  15. Li, S.; Xu, L. W.; Lu, M. R.; Sun, M. Z.; Xu, L. G.; Hao, C. L.; Wu, X. L.; Xu, C. L.; Kuang, H. Metabolic profile of chiral cobalt oxide nanoparticles in vitro and in vivo. Nano Res. 2021, 14, 2451–2455.

    Article  CAS  Google Scholar 

  16. Jeong, H. H.; Mark, A. G.; Alarcón-Correa, M.; Kim, I.; Oswald, P.; Lee, T. C.; Fischer, P. Dispersion and shape engineered plasmonic nanosensors. Nat. Commun. 2016, 7, 11331.

    Article  CAS  Google Scholar 

  17. Hentschel, M.; Schäferling, M.; Duan, X. Y.; Giessen, H.; Liu, N. Chiral plasmonics. Sci. Adv. 2017, 3, e1602735.

    Article  Google Scholar 

  18. Lu, J.; Chang, Y. X.; Zhang, N. N.; Wei, Y.; Li, A. J.; Tai, J.; Xue, Y.; Wang, Z. Y.; Yang, Y.; Zhao, L. et al. Chiral plasmonic nanochains via the self-assembly of gold nanorods and helical glutathione oligomers facilitated by cetyltrimethylammonium bromide micelles. ACS Nano 2017, 11, 3463–3475.

    Article  CAS  Google Scholar 

  19. Lan, X.; Lu, X. X.; Shen, C. Q.; Ke, Y. G.; Ni, W. H.; Wang, Q. B. Au nanorod helical superstructures with designed chirality. J. Am. Chem. Soc. 2015, 137, 457–462.

    Article  CAS  Google Scholar 

  20. Han, B.; Zhu, Z. N.; Li, Z. T.; Zhang, W.; Tang, Z. Y. Conformation modulated optical activity enhancement in chiral cysteine and Au nanorod assemblies. J. Am. Chem. Soc. 2014, 136, 16104–16107.

    Article  CAS  Google Scholar 

  21. Guerrero-Martinez, A.; Auguié, B.; Alonso-Gómez, J. L.; Džolić, Z.; Gómez-Graña, S.; Žinić, M.; Cid, M. M.; Liz-Marzán, L. M. Intense optical activity from three-dimensional chiral ordering of plasmonic nanoantennas. Angew. Chem., Int. Ed. 2011, 50, 5499–5503.

    Article  CAS  Google Scholar 

  22. González-Rubio, G.; Mosquera, J.; Kumar, V.; Pedrazo-Tardajos, A.; Llombart, P.; Solís, D. M.; Lobato, I.; Noya, E. G.; Guerrero-Martínez, A.; Taboada, J. M. et al. Micelle-directed chiral seeded growth on anisotropic gold nanocrystals. Science 2020, 368, 1472–1477.

    Article  Google Scholar 

  23. Deng, J.; Zheng, H. H.; Zheng, X. W.; Yao, M. Y.; Li, Z.; Gao, C. Y. Gold nanoparticles with surface-anchored chiral poly(acryloyl-L(D)-valine) induce differential response on mesenchymal stem cell osteogenesis. Nano Res. 2016, 9, 3683–3694.

    Article  CAS  Google Scholar 

  24. Lee, H. E.; Ahn, H. Y.; Mun, J.; Lee, Y. Y.; Kim, M.; Cho, N. H.; Chang, K.; Kim, W. S.; Rho, J.; Nam, K. T. Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles. Nature 2018, 556, 360–365.

    Article  CAS  Google Scholar 

  25. Zheng, G. C.; Bao, Z. Y.; Pérez-Juste, J.; Du, R. L.; Liu, W.; Dai, J. Y.; Zhang, W.; Lee, L. Y. S.; Wong, K. Y. Tuning the morphology and chiroptical properties of discrete gold nanorods with amino acids. Angew. Chem., Int. Ed. 2018, 57, 16452–16457.

    Article  CAS  Google Scholar 

  26. Nakagawa, M.; Kawai, T. Chirality-controlled syntheses of double-helical au nanowires. J. Am. Chem. Soc. 2018, 140, 4991–4994.

    Article  CAS  Google Scholar 

  27. Hao, C. L.; Xu, L. G.; Sun, M. Z.; Ma, W.; Kuang, H.; Xu, C. L. Chirality on hierarchical self-assembly of Au@AuAg yolk—shell nanorods into core—satellite superstructures for biosensing in human cells. Adv. Funct. Mater. 2018, 28, 1802372.

    Article  Google Scholar 

  28. Han, B.; Shi, L.; Gao, X. Q.; Guo, J.; Hou, K.; Zheng, Y. L.; Tang, Z. Y. Ultra-stable silica-coated chiral au-nanorod assemblies: Core—shell nanostructures with enhanced chiroptical properties. Nano Res. 2015, 9, 451–457.

    Article  Google Scholar 

  29. Lee, H. E.; Kim, R. M.; Ahn, H. Y.; Lee, Y. Y.; Byun, G. H.; Im, S. W.; Mun, J.; Rho, J.; Nam, K. T. Cysteine-encoded chirality evolution in plasmonic rhombic dodecahedral gold nanoparticles. Nat. Commun. 2020, 11, 263.

    Article  CAS  Google Scholar 

  30. Cho, N. H.; Byun, G. H.; Lim, Y. C.; Im, S. W.; Kim, H.; Lee, H. E.; Ahn, H. Y.; Nam, K. T. Uniform chiral gap synthesis for high dissymmetry factor in single plasmonic gold nanoparticle. ACS Nano 2020, 14, 3595–3602.

    Article  CAS  Google Scholar 

  31. Zheng, G. C.; de Marchi, S.; López-Puente, V.; Sentosun, K.; Polavarapu, L.; Pérez-Juste, I.; Hill, E. H.; Bals, S.; Liz-Marzán, L. M.; Pastoriza-Santos, I. et al. Encapsulation of single plasmonic nanoparticles within ZIF-8 and SERS analysis of the MOF flexibility. Small 2016, 12, 3935–3943.

    Article  CAS  Google Scholar 

  32. Wu, B. H.; Liu, D. Y.; Mubeen, S.; Chuong, T. T.; Moskovits, M.; Stucky, G. D. Anisotropic growth of TiO2 onto gold nanorods for plasmon-enhanced hydrogen production from water reduction. J. Am. Chem. Soc. 2016, 138, 1114–1117.

    Article  CAS  Google Scholar 

  33. Smith, K. W.; Zhao, H. Q.; Zhang, H.; Sánchez-Iglesias, A.; Grzelczak, M.; Wang, Y. M.; Chang, W. S.; Nordlander, P.; Liz-Marzan, L. M.; Link, S. Chiral and achiral nanodumbbell dimers: The effect of geometry on plasmonic properties. ACS Nano 2016, 10, 6180–6188.

    Article  CAS  Google Scholar 

  34. Jiang, R. B.; Chen, H. J.; Shao, L.; Li, Q.; Wang, J. F. Unraveling the evolution and nature of the plasmons in (Au core)—(Ag shell) nanorods. Adv. Mater. 2012, 24, OP200–OP207.

    Article  CAS  Google Scholar 

  35. Hou, S.; Yan, J.; Hu, Z. J.; Wu, X. C. Enhancing the plasmonic circular dichroism by entrapping chiral molecules at the core—shell interface of rod-shaped Au@Ag nanocrystals. Chem. Commun. 2016, 52, 2059–2062.

    Article  CAS  Google Scholar 

  36. Fischer, P.; Hache, F. Nonlinear optical spectroscopy of chiral molecules. Chirality 2005, 17, 421–137.

    Article  CAS  Google Scholar 

  37. Bai, B. F.; Svirko, Y.; Turunen, J.; Vallius, T. Optical activity in planar chiral metamaterials: Theoretical study. Phys. Rev. A 2007, 76, 023811.

    Article  Google Scholar 

  38. Yin, X. H.; Schäferling, M.; Metzger, B.; Giessen, H. Interpreting chiral nanophotonic spectra: The plasmonic born-kuhn model. Nano Lett. 2013, 13, 6238–6243.

    Article  CAS  Google Scholar 

  39. Zheng, G. C.; Mourdikoudis, S.; Zhang, Z. C. Plasmonic metallic heteromeric nanostructures. Small 2020, 16, 2002588.

    Article  CAS  Google Scholar 

  40. Guerrero-Martinez, A.; Alonso-Gómez, J. L.; Auguié, B.; Cid, M. M.; Liz-Marzán, L. M. From individual to collective chirality in metal nanoparticles. Nano Today 2011, 6, 381–400.

    Article  CAS  Google Scholar 

  41. Hentschel, M.; Wu, L.; Schäferling, M.; Bai, P.; Li, E. P.; Giessen, H. Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons. ACS Nano 2012, 6, 10355–10365.

    Article  CAS  Google Scholar 

  42. Govorov, A. O. Plasmon-induced circular dichroism of a chiral molecule in the vicinity of metal nanocrystals. Application to various geometries. J. Phys. Chem. C 2011, 115, 7914–7923.

    Article  CAS  Google Scholar 

  43. Govorov, A. O.; Fan, Z. Y.; Hernandez, P.; Slocik, J. M.; Naik, R. R. Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: Plasmon enhancement, dipole interactions, and dielectric effects. Nano Lett. 2010, 10, 1374–1382.

    Article  CAS  Google Scholar 

  44. Jin, Z.; Wang, F.; Wang, F.; Wang, J. X.; Yu, J. C.; Wang, J. F. Metal nanocrystal-embedded hollow mesoporous TiO2 and ZrO2 microspheres prepared with polystyrene nanospheres as carriers and templates. Adv. Funct. Mater. 2013, 23, 2137–2144.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21902148, 11774036, 12174032, and 22071172), the National Key Research and Development Program of China (No. 2017YFA0303400), and the National Natural Science Foundation of China-Research Grant Council (No. 11861161002). K. Y. W. acknowledges the support by the Patrick S. C. Poon endowed professorship. Luis M. Liz-marzan, Jorge Perez-Juste, and Isabel Pastoriza-Santos are thanked for their helpful comments on this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangchao Zheng, Wei Zhang or Zhicheng Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, G., Jiao, S., Zhang, W. et al. Fine-tune chiroptical activity in discrete chiral Au nanorods. Nano Res. 15, 6574–6581 (2022). https://doi.org/10.1007/s12274-022-4212-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4212-y

Keywords

Navigation