Skip to main content
Log in

MoS2 wrapped MOF-derived N-doped carbon nanocomposite with wideband electromagnetic wave absorption

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Designing electromagnetic wave absorption (EMWA) materials with wide bandwidth, strong absorption, and light weight is still a great challenge for practical applications. Herein, the novel nitrogen doped carbon (NDC)/MoS2 composite with rationally designed composition and structure was developed. The NDC particles were introduced into MoS2 nanosheets through the calcination of ZIF-8 precursor and consequent hydrothermal process. A series of characterizations were carried out to investigate the physical properties of the as-prepared nanocomposites. The NDC particles exhibited the shape of rhombic dodecahedron with the size of about 500 nm, which were decorated on flower-shaped MoS2 with the size of about 3 µm. With the increasing NDC content, the absorbing properties of NDC/MoS2 composites increased firstly and then decreased. The features of NDC/MoS2 composite including interconnected porous structure, nitrogen dopant, and appropriate electrical conductivity gave rise to the polarization, multiple reflection, multiple scattering, and impedance matching, resulting in the outstanding EMWA performance. With a filler loading ratio of 30 wt.%, the optimized EMWA property can be achieved when the mass ratio of NDC to MoS2 was adjusted to be 1:1. At a coating thickness of 3.0 mm, the effective EMWA bandwidth (< −10 dB) reached 6.08 GHz (8.56–14.64 GHz). These satisfactory achievements provide a way for the reasonable design of high-performance EMWA and new ideas for future research on wideband EMWA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, P. B.; Gao, S.; Zhang, G. Z.; Huang, Y.; You, W. B.; Che, R. C. Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 2021, 31, 2102812.

    CAS  Google Scholar 

  2. Han, Y. X.; Ruan, K. P.; Gu, J. W. Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances. Nano Res. 2022, 15, 4747–4755.

    CAS  Google Scholar 

  3. Cheng, R. R.; Wang, Y.; Di, X. C.; Lu, Z.; Wang, P.; Ma, M. L.; Ye, J. R. Construction of MOF-derived plum-like NiCo@C composite with enhanced multi-polarization for high-efficiency microwave absorption. J. Colloid Interface Sci. 2022, 609, 224–234.

    CAS  Google Scholar 

  4. Song, P.; Ma, Z. L.; Qiu, H.; Ru, Y. F.; Gu, J. W. High-efficiency electromagnetic interference shielding of rGO@FeNi/epoxy composites with regular honeycomb structures. Nano-Micro Lett. 2022, 14, 51.

    CAS  Google Scholar 

  5. Zhang, Y. L.; Gu, J. W. A perspective for developing polymer-based electromagnetic interference shielding composites. Nano-Micro Lett. 2022, 14, 89.

    Google Scholar 

  6. Xing, L. S.; Li, X.; Wu, Z. C.; Yu, X. F.; Liu, J. W.; Wang, L.; Cai, C. Y.; You, W. B.; Chen, G. Y.; Ding, J. J. et al. 3D hierarchical local heterojunction of MoS2/FeS2 for enhanced microwave absorption. Chem. Eng. J. 2020, 379, 122241.

    CAS  Google Scholar 

  7. Quan, B.; Shi, W. H.; Ong, S. J. H.; Lu, X. C.; Wang, P. L. Y.; Ji, G. B.; Guo, Y. F.; Zheng, L. R.; Xu, Z. C. J. Defect engineering in two common types of dielectric materials for electromagnetic absorption applications. Adv. Funct. Mater. 2019, 29, 1901236.

    Google Scholar 

  8. Zhang, D. Q.; Liang, S.; Chai, J. X.; Liu, T. T.; Yang, X. Y.; Wang, H.; Cheng, J. Y.; Zheng, G. P.; Cao, M. S. Highly effective shielding of electromagnetic waves in MoS2 nanosheets synthesized by a hydrothermal method. J. Phys. Chem. Solids 2019, 134, 77–82.

    CAS  Google Scholar 

  9. Feng, Z.; Yang, P. P.; Wen, G. S.; Li, H. B.; Liu, Y.; Zhao, X. C. One-step synthesis of MoS2 nanoparticles with different morphologies for electromagnetic wave absorption. Appl. Surf. Sci. 2020, 502, 144129.

    CAS  Google Scholar 

  10. Wang, B. C.; Ruan, W. J.; Mu, C. P.; Nie, A. M.; Wen, F. S.; Xiang, J. Y.; Liu, Z. Y. Direct one-step synthesis of CoFex@Co@C hybrids derived from a metal organic framework for a lightweight and high-performance microwave absorber. Nanotechnology 2020, 31, 095703.

    CAS  Google Scholar 

  11. Lv, H. L.; Li, Y.; Jia, Z. R.; Wang, L. J.; Guo, X. Q.; Zhao, B.; Zhang, R. Exceptionally porous three-dimensional architectural nanostructure derived from CNTs/graphene aerogel towards the ultrawideband EM absorption. Compos. Part B Eng. 2020, 196, 108122.

    CAS  Google Scholar 

  12. Ma, T.; Cui, Y.; Sha, Y. L.; Liu, L.; Ge, J. W.; Meng, F. D.; Wang, F. H. Facile synthesis of hierarchically porous rGO/MnZn ferrite composites for enhanced microwave absorption performance. Synth. Met. 2020, 265, 116407.

    CAS  Google Scholar 

  13. Yan, L. L.; Zhang, M.; Zhao, S. C.; Sun, T. J.; Zhang, B.; Cao, M. S.; Qin, Y. Wire-in-tube ZnO@carbon by molecular layer deposition: Accurately tunable electromagnetic parameters and remarkable microwave absorption. Chem. Eng. J. 2020, 382, 122860.

    CAS  Google Scholar 

  14. Qiu, Y.; Yang, H. B.; Wen, B.; Ma, L.; Lin, Y. Facile synthesis of nickel/carbon nanotubes hybrid derived from metal organic framework as a lightweight, strong and efficient microwave absorber. J. Colloid Interface Sci. 2021, 590, 561–570.

    CAS  Google Scholar 

  15. Sun, D. R.; Kim, D. P. Hydrophobic MOFs@metal nanoparticles@COFs for interfacially confined photocatalysis with high efficiency. ACS Appl. Mater. Interfaces 2020, 12, 20589–20595.

    CAS  Google Scholar 

  16. Zeng, Q. W.; Wang, L.; Li, X.; You, W. B.; Zhang, J.; Liu, X. H.; Wang, M.; Che, R. C. Double ligand MOF-derived pomegranate-like Ni@C microspheres as high-performance microwave absorber. Appl. Surf. Sci. 2021, 538, 148051.

    CAS  Google Scholar 

  17. Wang, Y. L.; Yang, S. H.; Wang, H. Y.; Wang, G. S.; Sun, X. B.; Yin, P. G. Hollow porous CoNi/C composite nanomaterials derived from MOFs for efficient and lightweight electromagnetic wave absorber. Carbon 2020, 167, 485–494.

    CAS  Google Scholar 

  18. Li, Y. F.; Fu, Y. Y.; Liu, W. B.; Song, Y. H.; Wang, L. Hollow Co-Co3O4@CNTs derived from ZIF-67 for lithium ion batteries. J. Alloys Compd. 2019, 784, 439–446.

    CAS  Google Scholar 

  19. Li, Z. N.; Han, X. J.; Ma, Y.; Liu, D. W.; Wang, Y. H.; Xu, P.; Li, C. L.; Du, Y. C. MOFs-derived hollow Co/C microspheres with enhanced microwave absorption performance. ACS Sustainable Chem. Eng. 2018, 6, 8904–8913.

    CAS  Google Scholar 

  20. Wang, L.; Wen, B.; Yang, H. B.; Qiu, Y.; He, N. R. Hierarchical nest-like structure of Co/Fe MOF derived CoFe@C composite as wide-bandwidth microwave absorber. Compos. Part A Appl. Sci. Manuf. 2020, 135, 105958.

    CAS  Google Scholar 

  21. Fan, R. L.; Zhou, J.; Xun, W.; Cheng, S. B.; Vanka, S.; Cai, T. Y.; Ju, S.; Mi, Z. T.; Shen, M. R. Highly efficient and stable Si photocathode with hierarchical MoS2/Ni3S2 catalyst for solar hydrogen production in alkaline media. Nano Energy 2020, 71, 104631.

    CAS  Google Scholar 

  22. Yan, T. Y.; Wang, J.; Wu, Q. L.; Huo, S. Q.; Duan, H. J. MOF-derived graphitized porous carbon/Fe-Fe3C nanocomposites with broadband and enhanced microwave absorption performance. J. Mater. Sci. Mater. Electron. 2019, 30, 12012–12022.

    CAS  Google Scholar 

  23. Liu, P. B.; Gao, S.; Wang, Y.; Zhou, F. T.; Huang, Y.; Huang, W. H.; Chang, N. H. Core-shell Ni@C encapsulated by N-doped carbon derived from nickel-organic polymer coordination composites with enhanced microwave absorption. Carbon 2020, 170, 503–516.

    CAS  Google Scholar 

  24. Zhang, F.; Zhang, W. D.; Zhu, W. F.; Cheng, B.; Qiu, H.; Qi, S. H. Core-shell nanostructured CS/MoS2: A promising material for microwave absorption. Appl. Surf. Sci. 2019, 463, 182–189.

    CAS  Google Scholar 

  25. Zhang, X. C.; Zhang, X.; Yuan, H. R.; Li, K. Y.; Ouyang, Q. Y.; Zhu, C. L.; Zhang, S.; Chen, Y. J. CoNi nanoparticles encapsulated by nitrogen-doped carbon nanotube arrays on reduced graphene oxide sheets for electromagnetic wave absorption. Chem. Eng. J. 2020, 383, 123208.

    CAS  Google Scholar 

  26. Huang, S.; Wang, L.; Li, Y. C.; Liang, C. B.; Zhang, J. L. Novel Ti3C2Tx MXene/epoxy intumescent fire-retardant coatings for ancient wooden architectures. J. Appl. Polym. Sci. 2021, 138, 50649.

    CAS  Google Scholar 

  27. Wang, L.; Ma, Z. L.; Zhang, Y. L.; Qiu, H.; Ruan K. P.; Gu, J. W. Mechanically strong and folding-endurance Ti3C2Tx MXene/PBO nanofiber films for efficient electromagnetic interference shielding and thermal management. Carbon Energy 2022, 4, 200–210.

    CAS  Google Scholar 

  28. Ma, Z. L.; Xiang, X. L.; Shao, L.; Zhang, Y. L.; Gu, J. W. Multifunctional wearable silver nanowire decorated leather nanocomposites for Joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem., Int. Ed. 2022, 61, e202200705.

    CAS  Google Scholar 

  29. Chen, S.; Zheng, Y; Zhang B.; Feng Y. Y.; Zhu, J. X.; Xu, J. S.; Zhang, C.; Feng, W.; Liu, T. X. Cobalt, nitrogen-doped porous carbon nanosheet-assembled flowers from metal-coordinated covalent organic polymers for efficient oxygen reduction. ACS Appl. Mater. Interfaces 2019, 11, 1384–1393.

    CAS  Google Scholar 

  30. Zhu, T.; Shen, W.; Wang, X. Y.; Song, Y. F.; Wang, W. Paramagnetic CoS2@MoS2 core-shell composites coated by reduced graphene oxide as broadband and tunable high-performance microwave absorbers. Chem. Eng. J. 2019, 378, 122159.

    CAS  Google Scholar 

  31. Wen, B.; Yang, H. B.; Lin, Y.; Wang, L.; Ma, L.; Qiu, Y. In situ anchoring carbon nanotubes on the Ni/C nanosheets with controllable thickness for boosting the electromagnetic waves absorption. Compos. Part A Appl. Sci. Manuf. 2020, 138, 106044.

    CAS  Google Scholar 

  32. Kuang, B. Y.; Ning, M. Q.; Wang, L.; Li, J. B.; Wang, C. Z.; Hou, Z. L.; Zhao, Y. J.; Jin, H. B. Biopolymer nanofiber/reduced graphene oxide aerogels for tunable and broadband high-performance microwave absorption. Compos. Part B Eng. 2019, 161, 1–9.

    CAS  Google Scholar 

  33. Chen, Z. H.; Tian, K. H.; Zhang, C.; Shu, R. W.; Zhu, J. B.; Liu, Y.; Huang, Y. N.; Liu, X. W. In-situ hydrothermal synthesis of NiCo alloy particles@hydrophilic carbon cloth to construct corncob-like heterostructure for high-performance electromagnetic wave absorbers. J. Colloid Interface Sci. 2022, 616, 823–833.

    CAS  Google Scholar 

  34. Liu, D. W.; Du, Y. C.; Wang, F. Y.; Wang, Y. H.; Cui, L. R.; Zhao, H. H.; Han, X. J. MOFs-derived multi-chamber carbon microspheres with enhanced microwave absorption. Carbon 2020, 157, 478–485.

    CAS  Google Scholar 

  35. Wang, H. Y.; Sun, X. B.; Yang, S. H.; Zhao, P. Y.; Zhang, X. J.; Wang, G. S.; Huang, Y. 3D ultralight hollow NiCo compound@MXene composites for tunable and high-efficient microwave absorption. Nano-Micro Lett. 2021, 13, 206.

    CAS  Google Scholar 

  36. Huang, W. H.; Gao, W. M.; Zuo, S. W.; Zhang, L. X.; Pei, K.; Liu, P. B.; Che, R. C.; Zhang, H. B. Hollow MoC/NC sphere for electromagnetic wave attenuation: Direct observation of interfacial polarization on nanoscale hetero-interfaces. J. Mater. Chem. A 2022, 10, 1290–1298.

    CAS  Google Scholar 

  37. Huang, W. H.; Qiu, Q.; Yang, X. F.; Zuo, S. W.; Bai, J. N.; Zhang, H. B.; Pei, K.; Che, R. C. Ultrahigh density of atomic CoFe-electron synergy in noncontinuous carbon matrix for highly efficient magnetic wave adsorption. Nano-Micro Lett. 2022, 14, 96.

    CAS  Google Scholar 

  38. Liu, W.; Tan, S. J.; Yang, Z. H.; Ji, G. B. Enhanced low-frequency electromagnetic properties of MOF-derived cobalt through interface design. ACS Appl. Mater. Interfaces 2018, 10, 31610–31622.

    CAS  Google Scholar 

  39. Liu, W.; Liu, L.; Yang, Z. H.; Xu, J. J.; Hou, Y. L.; Ji, G. B. A versatile route toward the electromagnetic functionalization of metal-organic framework-derived three-dimensional nanoporous carbon composites. ACS Appl. Mater. Interfaces 2018, 10, 8965–8975.

    CAS  Google Scholar 

  40. Zhang, W. D.; Zhang, X.; Wu, H. J.; Yan, H. X.; Qi, S. H. Impact of morphology and dielectric property on the microwave absorbing performance of MoS2-based materials. J. Alloys Compd. 2018, 751, 34–42.

    CAS  Google Scholar 

  41. Gai, L. X.; Zhao, Y. M.; Song, G. L.; An, Q. D.; Xiao, Z. Y.; Zhai, S. R.; Li, Z. C. Construction of core-shell PPy@MoS2 with nanotube-like heterostructures for electromagnetic wave absorption: Assembly and enhanced mechanism. Compos. Part A Appl. Sci. Manuf. 2020, 136, 105965.

    CAS  Google Scholar 

  42. Yan, J; Huang, Y.; Han, X. P.; Gao, X. G.; Liu, P. B. Metal organic framework (ZIF-67)-derived hollow CoS2/N-doped carbon nanotube composites for extraordinary electromagnetic wave absorption. Compos. Part B Eng. 2019, 163, 67–76.

    CAS  Google Scholar 

  43. Wang, Y. Z.; Xu, J.; He, P.; Liu, X. Y.; Zuo, P. Y.; Ma, W. J.; Zhuang, Q. X. Construction of Co/C@MoS2 core-shell nanocubes with enhanced electromagnetic-wave absorption performance. J. Alloys Compd. 2022, 905, 164080.

    CAS  Google Scholar 

  44. Gu, W. H.; Lv, J.; Quan, B.; Liang, X. H.; Zhang, B. S.; Ji, G. B. Achieving MOF-derived one-dimensional porous ZnO/C nanofiber with lightweight and enhanced microwave response by an electrospinning method. J. Alloys Compd. 2019, 806, 983–991.

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 52173267) and Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. SJCX21_XZ013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juhua Luo.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, J., Feng, M., Dai, Z. et al. MoS2 wrapped MOF-derived N-doped carbon nanocomposite with wideband electromagnetic wave absorption. Nano Res. 15, 5781–5789 (2022). https://doi.org/10.1007/s12274-022-4411-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4411-6

Keywords

Navigation