Skip to main content
Log in

A waterproof and breathable Cotton/rGO/CNT composite for constructing a layer-by-layer structured multifunctional flexible sensor

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Developing a cotton fabric sensing layer with good waterproofness and breathability via a low-cost and eco-friendly method is increasingly important for the construction of comfortable and wearable electronic devices. Herein, a waterproof and breathable cotton fabric composite decorated by reduced graphene oxide (rGO) and carbon nanotube (CNT), Cotton/rGO/CNT, is reported by a facile solution infiltration method, and we adopt such Cotton/rGO/CNT composite to develop a layer-by-layer structured multifunctional flexible sensor, enabling the high-sensitivity detection of pressure and temperature stimulus. Particularly, the multifunctional flexible sensor exhibits a high response toward tiny pressure, demonstrating salient superiority in the continuous and reliable monitoring of human physiological information. Concerning temperature sensing, a good linear response for the temperatures ranging from 28 to 40 °C is achieved by the multifunctional flexible sensor and gives rise to be successfully applied to the non-contact real-time monitoring of human respiration signal. Finally, an array consisting of multifunctional flexible sensors further demonstrates its feasibility in perceiving and mapping the pressure and temperature information of contact objects. This work provides a feasible strategy for designing cotton-based sensing layers that can effectively resist liquid water penetration and allow water vapor transmission, and offers reasonable insight for constructing comfort and multifunctional wearable electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu, Y. D.; Zhao, G. G.; Zhu, L.; Fei, Q. H.; Zhang, Z.; Chen, Z. Y.; An, F. F.; Chen, Y. Y.; Ling, Y.; Guo, P. J. et al. Pencil-paper on-skin electronics. Proc. Natl. Acad. Sci. USA 2020, 117, 18292–18301.

    Article  CAS  Google Scholar 

  2. Kim, E. H.; Han, H.; Yu, S.; Park, C.; Kim, G.; Jeong, B.; Lee, S. W.; Kim, J. S.; Lee, S.; Kim, J. et al. Interactive skin display with epidermal stimuli electrode. Adv. Sci. 2019, 6, 1802351.

    Article  Google Scholar 

  3. Hu, Y. G.; Zhao, T.; Zhu, P. L.; Zhang, Y.; Liang, X. W.; Sun, R.; Wong, C. P. A low-cost, printable, and stretchable strain sensor based on highly conductive elastic composites with tunable sensitivity for human motion monitoring. Nano Res. 2018, 11, 1938–1955.

    Article  Google Scholar 

  4. Yang, J. C.; Mun, J.; Kwon, S. Y.; Park, S.; Bao, Z. N.; Park, S. Electronic skin: Recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 2019, 31, 1904765.

    Article  CAS  Google Scholar 

  5. Kim, Y.; Chortos, A.; Xu, W. T.; Liu, Y. X.; Oh, J. Y.; Son, D.; Kang, J.; Foudeh, A. M.; Zhu, C. X.; Lee, Y. et al. A bioinspired flexible organic artificial afferent nerve. Science 2018, 360, 998–1003.

    Article  CAS  Google Scholar 

  6. Yang, J. C.; Mun, J.; Kwon, S. Y.; Park, S.; Bao, Z. N.; Park, S. Electronic skin: Recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 2019, 31, 1904765.

    Article  CAS  Google Scholar 

  7. Moin, A.; Zhou, A.; Rahimi, A.; Menon, A.; Benatti, S.; Alexandrov, G.; Tamakloe, S.; Ting, J.; Yamamoto, N.; Khan, Y. et al. A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition. Nat. Electron. 2021, 4, 54–63.

    Article  Google Scholar 

  8. Yu, Y.; Nassar, J.; Xu, C. H.; Min, J. H.; Yang, Y. R.; Dai, A.; Doshi, R.; Huang, A.; Song, Y.; Gehlhar, R. et al. Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human-machine interfaces. Sci. Robot. 2020, 5, eaaz7946.

    Article  Google Scholar 

  9. Wang, W. X.; Gao, S.; Li, Y.; Yue, W. J.; Kan, H.; Zhang, C. W.; Lou, Z.; Wang, L. L.; Shen, G. Z. Artificial optoelectronic synapses based on TiNxO2−x/MoS2 heterojunction for neuromorphic computing and visual system. Adv. Funct. Mater. 2021, 131, 2101201.

    Article  Google Scholar 

  10. Zhao, Y. S.; Zhang, B. Z.; Yao, B. W.; Qiu, Y.; Peng, Z. H.; Zhang, Y. C.; Alsaid, Y.; Frenkel, I.; Youssef, K.; Pei, Q. B. et al. Hierarchically structured stretchable conductive hydrogels for high-performance wearable strain sensors and supercapacitors. Matter 2020, 3, 1196–1210.

    Article  Google Scholar 

  11. Kong, H. J.; Song, Z. Q.; Li, W. Y.; Bao, Y.; Qu, D. Y.; Ma, Y. M.; Liu, Z. B.; Wang, W.; Wang, Z. X.; Han, D. X. et al. Skin-inspired hair-epidermis-dermis hierarchical structures for electronic skin sensors with high sensitivity over a wide linear range. ACS Nano 2021, 15, 16218–16227.

    Article  CAS  Google Scholar 

  12. Trung, T. Q.; Duy, L. T.; Ramasundaram, S.; Lee, N. E. Transparent, stretchable, and rapid-response humidity sensor for body-attachable wearable electronics. Nano Res. 2017, 10, 2021–2033.

    Article  CAS  Google Scholar 

  13. Beker, L.; Matsuhisa, N.; You, I.; Ruth, S. R. A.; Niu, S. M.; Foudeh, A.; Tok, J. B. H.; Chen, X. D.; Bao, Z. N. A bioinspired stretchable membrane-based compliance sensor. Proc. Natl. Acad. Sci. USA 2020, 117, 11314–11320.

    Article  CAS  Google Scholar 

  14. Wei, X.; Li, H.; Yue, W. J.; Gao, S.; Chen, Z. X.; Li, Y.; Shen, G. Z. A high-accuracy, real-time, intelligent material perception system with a machine-learning-motivated pressure-sensitive electronic skin. Matter, in press, https://doi.org/10.1016/J.MATT.2022.02.016.

  15. Tang, L.; Wu, S. J.; Xu, Y.; Cui, T.; Li, Y. H.; Wang, W.; Gong, L.; Tang, J. X. High toughness fully physical cross-linked double network organohydrogels for strain sensors with anti-freezing and anti-fatigue properties. Mater. Adv. 2021, 2, 6655–6664.

    Article  CAS  Google Scholar 

  16. Wang, Z. W.; Cui, H. J.; Li, S.; Feng, X. W.; Aghassi-Hagmann, J.; Azizian, S.; Levkin, P. A. Facile approach to conductive polymer microelectrodes for flexible electronics. ACS Appl. Mater. Interfaces 2021, 13, 21661–21668.

    Article  CAS  Google Scholar 

  17. Wang, T.; Zhang, Y.; Liu, Q. C.; Cheng, W.; Wang, X. R.; Pan, L. J.; Xu, B. X.; Xu, H. X. A self-healable, highly stretchable, and solution processable conductive polymer composite for ultrasensitive strain and pressure sensing. Adv. Funct. Mater. 2018, 28, 1705551.

    Article  Google Scholar 

  18. Pang, K.; Song, X.; Xu, Z.; Liu, X. T.; Liu, Y. J.; Zhong, L.; Peng, Y. X.; Wang, J. X.; Zhou, J. Z.; Meng, F. X. et al. Hydroplastic foaming of graphene aerogels and artificially intelligent tactile sensors. Sci. Adv. 2020, 6, eabd4045.

    Article  CAS  Google Scholar 

  19. Xue, B.; Sheng, H.; Li, Y. Q.; Li, L.; Di, W. S.; Xu, Z. Y.; Ma, L. J.; Wang, X.; Jiang, H. T.; Qin, M. et al. Stretchable and self-healable hydrogel artificial skin. Nat. Sci. Rev., in press, https://doi.org/10.1093/nsr/nwab147.

  20. Liao, M. H.; Wan, P. B.; Wen, J. R.; Gong, M.; Wu, X. X.; Wang, Y. G.; Shi, R.; Zhang, L. Q. Wearable, healable, and adhesive epidermal sensors assembled from mussel-inspired conductive hybrid hydrogel framework. Adv. Funct. Mater. 2017, 27, 1703852.

    Article  Google Scholar 

  21. Fan, W. J.; He, Q.; Meng, K. Y.; Tan, X. L.; Zhou, Z. H.; Zhang, G. Q.; Yang, J.; Wang, Z. L. Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring. Sci. Adv. 2020, 6, eaay2840.

    Article  CAS  Google Scholar 

  22. Zhang, M. C.; Wang, C. Y.; Wang, H. M.; Jian, M. Q.; Hao, X. Y.; Zhang, Y. Y. Carbonized cotton fabric for high-performance wearable strain sensors. Adv. Funct. Mater. 2017, 27, 1604795.

    Article  Google Scholar 

  23. Zheng, Y. J.; Li, Y. L.; Zhou, Y. J.; Dai, K.; Zheng, G. Q.; Zhang, B.; Liu, C. T.; Shen, C. Y. High-performance wearable strain sensor based on graphene/cotton fabric with high durability and low detection limit. ACS Appl. Mater. Interfaces 2020, 12, 1474–1485.

    Article  CAS  Google Scholar 

  24. Zhang, X. S.; Wang, X. F.; Lei, Z. W.; Wang, L. L.; Tian, M. W.; Zhu, S. F.; Xiao, H.; Tang, X. N.; Qu, L. J. Flexible MXene-decorated fabric with interwoven conductive networks for integrated joule heating, electromagnetic interference shielding, and strain sensing performances. ACS Appl. Mater. Interfaces 2020, 12, 14459–14467.

    Article  CAS  Google Scholar 

  25. Liu, R.; Li, J. M.; Li, M.; Zhang, Q. H.; Shi, G. Y.; Li, Y. G.; Hou, C. Y.; Wang, H. Z. MXene-coated air-permeable pressure-sensing fabric for smart wear. ACS Appl. Mater. Interfaces 2020, 12, 46446–46454.

    Article  CAS  Google Scholar 

  26. Xu, H. C.; Gao, L. B.; Wang, Y. J.; Cao, K.; Hu, X. K.; Wang, L.; Mu, M.; Liu, M.; Zhang, H. Y.; Wang, W. D. et al. Flexible waterproof piezoresistive pressure sensors with wide linear working range based on conductive fabrics. Nanomicro Lett. 2020, 12, 159.

    Article  Google Scholar 

  27. Chen, L. M.; Lu, M. Y.; Yang, H. S.; Salas Avila, J. R.; Shi, B. W.; Ren, L.; Wei, G. W.; Liu, X. Q.; Yin, W. L. Textile-based capacitive sensor for physical rehabilitation via surface topological modification. ACS Nano 2020, 14, 8191–8201.

    Article  CAS  Google Scholar 

  28. Wang, L. C.; Zhang, C. G.; Jiao, X.; Yuan, Z. H. Polypyrrole-based hybrid nanostructures grown on textile for wearable supercapacitors. Nano Res. 2019, 12, 1129–1137.

    Article  CAS  Google Scholar 

  29. Liu, M. M.; Pu, X.; Jiang, C. Y.; Liu, T.; Huang, X.; Chen, L. B.; Du, C. H.; Sun, J. M.; Hu, W. G.; Wang, Z. L. Large-area all-textile pressure sensors for monitoring human motion and physiological signals. Adv. Mater. 2017, 29, 1703700.

    Article  Google Scholar 

  30. Dudem, B.; Mule, A. R.; Patnam, H. R.; Yu, J. S. Wearable and durable triboelectric nanogenerators via polyaniline coated cotton textiles as a movement sensor and self-powered system. Nano Energy 2019, 55, 305–315.

    Article  CAS  Google Scholar 

  31. Cataldi, P.; Ceseracciu, L.; Athanassiou, A.; Bayer, I. S. Healable cotton-graphene nanocomposite conductor for wearable electronics. ACS Appl. Mater. Interfaces 2017, 9, 13825–13830.

    Article  CAS  Google Scholar 

  32. Wang, Y. G.; Chao, M. Y.; Wan, P. B.; Zhang, L. Q. A wearable breathable pressure sensor from metal-organic framework derived nanocomposites for highly sensitive broad-range healthcare monitoring. Nano Energy 2020, 70, 104560.

    Article  CAS  Google Scholar 

  33. Xu, Y. D.; Sun, B. H.; Ling, Y.; Fei, Q. H.; Chen, Z. Y.; Li, X. P.; Guo, P. J.; Jeon, N.; Goswami, S.; Liao, Y. X. et al. Multiscale porous elastomer substrates for multifunctional on-skin electronics with passive-cooling capabilities. Proc. Natl. Acad. Sci. USA 2020, 117, 205–213.

    Article  CAS  Google Scholar 

  34. Li, Z. L.; Zhu, M. M.; Shen, J. L.; Qiu, Q.; Yu, J. Y.; Ding, B. All-fiber structured electronic skin with high elasticity and breathability. Adv. Funct. Mater. 2020, 30, 1908411.

    Article  CAS  Google Scholar 

  35. Liu, L. X.; Chen, W.; Zhang, H. B.; Wang, Q. W.; Guan, F. L.; Yu, Z. Z. Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv. Funct. Mater. 2019, 29, 1905197.

    Article  CAS  Google Scholar 

  36. Zhang, L.; He, J.; Liao, Y. S.; Zeng, X. T.; Qiu, N. X.; Liang, Y.; Xiao, P.; Chen, T. A self-protective, reproducible textile sensor with high performance towards human-machine interactions. J. Mater. Chem. A 2019, 7, 26631–26640.

    Article  CAS  Google Scholar 

  37. Niu, B.; Yang, S.; Hua, T.; Tian, X.; Koo, M. Facile fabrication of highly conductive, waterproof, and washable e-textiles for wearable applications. Nano Res. 2021, 14, 1043–1052.

    Article  CAS  Google Scholar 

  38. Yu, X.; Zhao, Z. H.; Sun, D. H.; Ren, N.; Yu, J. H.; Yang, R. Q.; Liu, H. Microwave-assisted hydrothermal synthesis of Sn3O4 nanosheet/rGO planar heterostructure for efficient photocatalytic hydrogen generation. Appl. Catal. B:Environ. 2018, 227, 470–476.

    Article  CAS  Google Scholar 

  39. Tian, X.; Zhang, S.; Ma, Y. Q.; Luo, Y. L.; Xu, F.; Chen, Y. S. Preparation and vapor-sensitive properties of hydroxyl-terminated polybutadiene polyurethane conductive polymer nanocomposites based on polyaniline-coated multiwalled carbon nanotubes. Nanotechnology 2020, 31, 195504.

    Article  CAS  Google Scholar 

  40. Pecharromán, C.; Moya, J. S. Experimental evidence of a giant capacitance in insulator-conductor composites at the percolation threshold. Adv. Mater. 2000, 12, 294–297.

    Article  Google Scholar 

  41. Qiu, J.; Guo, X. H.; Chu, R.; Wang, S. L.; Zeng, W.; Qu, L.; Zhao, Y. N.; Yan, F.; Xing, G. Z. Rapid-response, low detection limit, and high-sensitivity capacitive flexible tactile sensor based on three-dimensional porous dielectric layer for wearable electronic skin. ACS Appl. Mater. Interfaces 2019, 11, 40716–40725.

    Article  CAS  Google Scholar 

  42. Choi, J.; Kwon, D.; Kim, K.; Park, J.; Del Orbe, D.; Gu, J. M.; Ahn, J.; Cho, I.; Jeong, Y.; Oh, Y. et al. Synergetic effect of porous elastomer and percolation of carbon nanotube filler toward high performance capacitive pressure sensors. ACS Appl. Mater. Interfaces 2020, 12, 1698–1706.

    Article  CAS  Google Scholar 

  43. Wang, X. W.; Gu, Y.; Xiong, Z. P.; Cui, Z.; Zhang, T. Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv. Mater. 2014, 26, 1336–1342.

    Article  CAS  Google Scholar 

  44. O’Rourke, M. F. The arterial pulse in health and disease. Am. Heart J. 1971, 82, 687–702.

    Article  Google Scholar 

  45. Guo, Y. J.; Gao, S.; Yue, W. J.; Zhang, C. W.; Li, Y. Anodized aluminum oxide-assisted low-cost flexible capacitive pressure sensors based on double-sided nanopillars by a facile fabrication method. ACS Appl. Mater. Interfaces 2019, 11, 48594–48603.

    Article  CAS  Google Scholar 

  46. Niu, H. S.; Gao, S.; Yue, W. J.; Li, Y.; Zhou, W. J.; Liu, H. Highly morphology-controllable and highly sensitive capacitive tactile sensor based on epidermis-dermis-inspired interlocked asymmetric-nanocone arrays for detection of tiny pressure. Small 2020, 16, 1904774.

    Article  CAS  Google Scholar 

  47. Chen, S. J.; Zhuo, B. G.; Guo, X. J. Large area one-step facile processing of microstructured elastomeric dielectric film for high sensitivity and durable sensing over wide pressure range. ACS Appl. Mater. Interfaces 2016, 8, 20364–20370.

    Article  CAS  Google Scholar 

  48. Lin, Q. P.; Huang, J.; Yang, J. L.; Huang, Y.; Zhang, Y. F.; Wang, Y. J.; Zhang, J. M.; Wang, Y.; Yuan, L. L.; Cai, M. K. et al. Highly sensitive flexible iontronic pressure sensor for fingertip pulse monitoring. Adv. Healthc. Mater. 2020, 9, e2001023.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 62174068, 61805101, 62005095, 61888102, and 62104080), Shandong Provincial Natural Science Foundation of China (Nos. ZR2019BF013 and ZR2020QF105), and Rizhao City Key Research and Development Program under Grant (No. 2021ZDYF010102).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Li, Song Gao or Guozhen Shen.

Electronic Supplementary Material

12274_2022_4440_MOESM1_ESM.pdf

A waterproof and breathable Cotton/rGO/CNT composite for constructing a layer-by-layer structured multifunctional flexible sensor

Supplementary material, approximately 843 KB.

Supplementary material, approximately 446 KB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, F., Guo, Y., Li, H. et al. A waterproof and breathable Cotton/rGO/CNT composite for constructing a layer-by-layer structured multifunctional flexible sensor. Nano Res. 15, 9341–9351 (2022). https://doi.org/10.1007/s12274-022-4440-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4440-1

Keywords

Navigation