Skip to main content
Log in

Magnetic-dielectric synergy and interfacial engineering to design yolk–shell structured CoNi@void@C and CoNi@void@C@MoS2 nanocomposites with tunable and strong wideband microwave absorption

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In order to effectively utilize the magnetic-dielectric synergy and interfacial engineering, in this paper, yolk—shell structured magnetic multicomponent nanocomposites (MCNCs) including CoNi@void@C and CoNi@void@C@MoS2 were produced in large scale by in-situ pyrolysis of cubic CoNi Prussian blue analogs (PBAs) followed by the hydrothermal process, respectively. Because of their unique structures, excellent synergistic effect between dielectric and magnetic loss, the as-prepared CoNi@void@C and CoNi@void@C@MoS2 MCNCs displayed very outstanding electromagnetic wave absorption performances (EMWAPs) including strong absorption capabilities, broad absorption bandwidth and thin matching thicknesses. Furthermore, the as-prepared CoNi@void@C and CoNi@void@C@MoS2 MCNCs well maintained the cubic configuration of CoNi PBAs even after the thermal treatment and hydrothermal processes. The unique structure and formed carbon layers effectively prevented the corrosion of internal CoNi alloy during the formation of MoS2, and CoNi@void@C@MoS2 MCNCs with different MoS2 contents could be synthesized by controlling the hydrothermal temperature. The obtained results revealed that the EM parameters, dielectric and magnetic loss capabilities of CoNi@void@C@MoS2 MCNCs could be tuned by controlling hydrothermal temperature and filler loading, which made their outstanding EMWAPs could be achieved in different frequency regions. Taking account of simple process, low density and high chemical stability, our findings provided a new and effective pathway to develop the strong wideband microwave absorbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ma, Z. L.; Xiang, X. L.; Shao, L.; Zhang, Y. L.; Gu, J. W. Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem., Int. Ed. 2022, 61, e202200705.

    CAS  Google Scholar 

  2. Zeng, X. J.; Cheng, X. Y.; Yu, R. H.; Stucky, G. D. Electromagnetic microwave absorption theory and recent achievements in microwave absorbers. Carbon 2020, 168, 606–623.

    Article  CAS  Google Scholar 

  3. Zhang, Y. L.; Gu, J. W. A perspective for developing polymer-based electromagnetic interference shielding composites. Nano-Micro Lett. 2022, 14, 89.

    Article  Google Scholar 

  4. Wang, X. X.; Cao, W. Q.; Cao, M. S.; Yuan, J. Assembling nano-microarchitecture for electromagnetic absorbers and smart devices. Adv. Mater. 2020, 32, 2002112.

    Article  CAS  Google Scholar 

  5. Wang, J. W.; Jia, Z. R.; Liu, X. H.; Dou, J. L.; Xu, B. H.; Wang, B. B.; Wu, G. L. Construction of 1D heterostructure NiCo@C/ZnO nanorod with enhanced microwave absorption. Nano-Micro Lett. 2021, 13, 175.

    Article  CAS  Google Scholar 

  6. Lyu, L. F.; Wang, F. L.; Zhang, X.; Qiao, J.; Liu, C.; Liu, J. R. CuNi alloy/carbon foam nanohybrids as high-performance electromagnetic wave absorbers. Carbon 2021, 172, 488–496.

    Article  CAS  Google Scholar 

  7. Liu, J. L.; Zhang, L. M.; Zang, D. Y.; Wu, H. J. A competitive reaction strategy toward binary metal sulfides for tailoring electromagnetic wave absorption. Adv. Funct. Mater. 2021, 31, 2105018.

    Article  CAS  Google Scholar 

  8. Hou, T. Q.; Jia, Z. R.; Dong, Y. H.; Liu, X. H.; Wu, G. L. Layered 3D structure derived from MXene/magnetic carbon nanotubes for ultra-broadband electromagnetic wave absorption. Chem. Eng. J. 2022, 431, 133919.

    Article  CAS  Google Scholar 

  9. Yang, X. F.; Fan, B. X.; Tang, X.; Wang, J. L.; Tong, G. X.; Chen, D. B.; Guan, J. G. Interface modulation of chiral PPy/Fe3O4 planar microhelixes to achieve electric/magnetic-coupling and wide-band microwave absorption. Chem. Eng. J. 2022, 430, 132747.

    Article  CAS  Google Scholar 

  10. Wen, B.; Yang, H. B.; Lin, Y.; Qiu, Y.; Cheng, Y.; Jin, L. X. Novel bimetallic MOF derived hierarchical Co@C composites modified with carbon nanotubes and its excellent electromagnetic wave absorption properties. J. Colloid Interface Sci. 2022, 605, 657–666.

    Article  CAS  Google Scholar 

  11. Wang, H. Y.; Sun, X. B.; Yang, S. H.; Zhao, P. Y.; Zhang, X. J.; Wang, G. S.; Huang, Y. 3D ultralight hollow NiCo compound@MXene composites for tunable and high-efficient microwave absorption. Nano-Micro Lett. 2021, 13, 206.

    Article  CAS  Google Scholar 

  12. Li, H.; Bao, S. S.; Li, Y. M.; Huang, Y. Q.; Chen, J. Y.; Zhao, H.; Jiang, Z. Y.; Kuang, Q.; Xie, Z. X. Optimizing the electromagnetic wave absorption performances of designed Co3Fe7@C yolk-shell structures. ACS Appl. Mater. Interfaces 2018, 10, 28839–28849.

    Article  CAS  Google Scholar 

  13. Ning, M. Q.; Lei, Z. K.; Tan, G. G.; Man, Q. K.; Li, J. B.; Li, R. W. Dumbbell-like Fe3O4@N-doped carbon@2H/1T-MoS2 with tailored magnetic and dielectric loss for efficient microwave absorbing. ACS Appl. Mater. Interfaces 2021, 13, 47061–47071.

    Article  CAS  Google Scholar 

  14. Zhang, X. C.; Zhang, X.; Yuan, H. R.; Li, K. Y.; Ouyang, Q. Y.; Zhu, C. L.; Zhang, S.; Chen, Y. J. CoNi nanoparticles encapsulated by nitrogen-doped carbon nanotube arrays on reduced graphene oxide sheets for electromagnetic wave absorption. Chem. Eng. J. 2020, 383, 123208.

    Article  CAS  Google Scholar 

  15. Wang, L.; Bai, X. Y.; Wen, B.; Du, Z.; Lin, Y. Honeycomb-like Co/C composites derived from hierarchically nanoporous ZIF-67 as a lightweight and highly efficient microwave absorber. Compos. Part B Eng. 2019, 166, 464–471.

    Article  CAS  Google Scholar 

  16. Liu, L.; He, N.; Wu, T.; Hu, P. B.; Tong, G. X. Co/C/Fe/C hierarchical flowers with strawberry-like surface as surface plasmon for enhanced permittivity, permeability, and microwave absorption properties. Chem. Eng. J. 2019, 355, 103–108.

    Article  CAS  Google Scholar 

  17. Liu, P. B.; Gao, S.; Zhang, G. Z.; Huang, Y.; You, W. B.; Che, R. C. Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 2021, 31, 2102812.

    Article  CAS  Google Scholar 

  18. Liang, L. L.; Gu, W. H.; Wu, Y.; Zhang, B. S.; Wang, G. H.; Yang, Y.; Ji, G. B. Heterointerface engineering in electromagnetic absorbers: New insights and opportunities. Adv. Mater. 2022, 34, 2106195.

    Article  CAS  Google Scholar 

  19. Lin, L. S.; Song, J. B.; Yang, H. H.; Chen, X. Y. Yolk-shell nanostructures: Design, synthesis, and biomedical applications. Adv. Mater. 2018, 30, 1704639.

    Article  Google Scholar 

  20. Zhao, X. Y.; Guo, K. L.; Zhang, K.; Duan, S.; Chen, M. W.; Zhao, N. N.; Xu, F. J. Orchestrated yolk-shell nanohybrids regulate macrophage polarization and dendritic cell maturation for oncotherapy with augmented antitumor immunity. Adv. Mater. 2022, 2108263.

  21. Park, G. D.; Kang, Y. C. Yolk-shell-structured nanospheres with goat pupil-like S-doped SnSe yolk and hollow carbon-shell configuration as anode material for sodium-ion storage. Small Methods 2021, 5, 2100302.

    Article  CAS  Google Scholar 

  22. Zhao, H. H.; Xu, X. Z.; Wang, Y. H.; Fan, D. G.; Liu, D. W.; Lin, K. F.; Xu, P.; Han, X. J.; Du, Y. C. Heterogeneous interface induced the formation of hierarchically hollow carbon microcubes against electromagnetic pollution. Small 2020, 16, 2003407.

    Article  CAS  Google Scholar 

  23. Man, Z. M.; Li, P.; Zhou, D.; Wang, Y. Z.; Liang, X. H.; Zang, R.; Li, P. X.; Zuo, Y. Q.; Lam, Y. M.; Wang, G. X. Two birds with one stone: FeS2@C yolk-shell composite for high-performance sodium-ion energy storage and electromagnetic wave absorption. Nano Lett. 2020, 20, 3769–3777.

    Article  CAS  Google Scholar 

  24. Liu, X. F.; Hao, C. C.; He, L. H.; Yang, C.; Chen, Y. B.; Jiang, C. B.; Yu, R. H. Yolk-shell structured Co-C/void/Co9S8 composites with a tunable cavity for ultrabroadband and efficient low-frequency microwave absorption. Nano Res. 2018, 11, 4169–4182.

    Article  CAS  Google Scholar 

  25. Liu, Q. H.; Cao, Q.; Bi, H.; Liang, C. Y.; Yuan, K. P.; She, W.; Yang, Y. J.; Che, R. C. CoNi@SiO2@TiO2 and CoNi@air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 2016, 28, 486–490.

    Article  CAS  Google Scholar 

  26. Ma, W. J.; He, P.; Wang, T. Y.; Xu, J.; Liu, X. Y.; Zhuang, Q. X.; Cui, Z. K.; Lin, S. L. Microwave absorption of carbonization temperature-dependent uniform yolk-shell H-Fe3O4@C microspheres. Chem. Eng. J. 2021, 420, 129875.

    Article  CAS  Google Scholar 

  27. Gao, S. T.; Zhang, Y. C.; Xing, H. L.; Li, H. X. Controlled reduction synthesis of yolk-shell magnetic@void@C for electromagnetic wave absorption. Chem. Eng. J. 2020, 387, 124149.

    Article  CAS  Google Scholar 

  28. Zhang, Y. L.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Res., in press, DOI: https://doi.org/10.1007/sl2274-022-4358-7.

  29. Huang, S.; Wang, L.; Li, Y. C.; Liang, C. B.; Zhang, J. L. Novel Ti3C2T MXene/epoxy intumescent fire-retardant coatings for ancient wooden architectures. J. Appl. Polym. Sci. 2021, 138, 50649.

    Article  CAS  Google Scholar 

  30. Xing, L. S.; Li, X.; Wu, Z. C.; Yu, X. F.; Liu, J. W.; Wang, L.; Cai, C. Y.; You, W. B.; Chen, G. Y.; Ding, J. J. et al. 3D hierarchical local heterojunction of MoS2/FeS2 for enhanced microwave absorption. Chem Eng J. 2020, 379, 122241.

    Article  CAS  Google Scholar 

  31. Sun, X.; Pu, Y. H.; Wu, F.; He, J. Z.; Deng, G.; Song, Z. M.; Liu, X. F.; Shui, J. L.; Yu, R. H. 0D-1D-2D multidimensionally assembled Co9S8/CNTs/MoS2 composites for ultralight and broadband electromagnetic wave absorption.. Chem Eng J. 2021, 423, 130132.

    Article  CAS  Google Scholar 

  32. Zhang, W. X.; Yang, M.; Zhang, H.; Yu, X. J.; Zhang, W.; Wee, A. T. S.; Yan, X.; Qi, J. W.; Li, J. S. A confinement approach to fabricate hybrid PBAs-derived FeCo@NC yolk-shell nanoreactors for bisphenol a degradation. Chem. Eng. J. 2022, 428, 131080.

    Article  CAS  Google Scholar 

  33. Cui, L. R.; Wang, Y. H.; Han, X. J.; Xu, P.; Wang, F. Y.; Liu, D. W.; Zhao, H. H.; Du, Y. C. Phenolic resin reinforcement: A new strategy for hollow NiCo@C microboxes against electromagnetic pollution. Carbon 2021, 174, 673–682.

    Article  CAS  Google Scholar 

  34. Zhao, B.; Li, Y.; Ji, H. Y.; Bai, P. W.; Wang, S.; Fan, B. B.; Guo, X. Q.; Zhang, R. Lightweight graphene aerogels by decoration of 1D CoNi chains and CNTs to achieve ultra-wide microwave absorption. Carbon 2021, 176, 411–420.

    Article  CAS  Google Scholar 

  35. Qiu, Y.; Yang, H. B.; Cheng, Y.; Wen, B.; Lin, Y. Structure design of Prussian blue analogue derived CoFe@C composite with tunable microwave absorption performance. Appl. Surf. Sci. 2022, 571, 151334.

    Article  CAS  Google Scholar 

  36. Li, C.; Peng, Q.; Qi, X. S.; Chen, Y. L.; Gong, X.; Wang, X.; Deng, C. Y.; Zhong, W.; Du, Y. W. Morphology optimization strategy of flower-like CoNi2S4/Co9S8@MoS2 core@shell nanocomposites to achieve extraordinary microwave absorption performances. J. Colloid Interface Sci. 2022, 606, 1128–1139.

    Article  CAS  Google Scholar 

  37. Guan, H. T.; Wang, Q. Y.; Wu, X. F.; Pang, J.; Jiang, Z. Y.; Chen, G.; Dong, C. J.; Wang, L. H.; Gong, C. H. Biomass derived porous carbon (BPC) and their composites as lightweight and efficient microwave absorption materials. Compos. Part B Eng. 2021, 207, 108562.

    Article  CAS  Google Scholar 

  38. Wang, Y. F.; Chen, D. L.; Yin, X.; Xu, P.; Wu, F.; He, M. Hybrid of MoS2 and reduced graphene oxide: A lightweight and broadband electromagnetic wave absorber. ACS Appl. Mater. Interfaces 2015, 7, 26226–26234.

    Article  CAS  Google Scholar 

  39. Lei, L.; Yao, Z. J.; Zhou, J. T.; Zheng, W. J.; Wei, B.; Zu, J. Q.; Yan, K. Y. Hydrangea-like Ni/NiO/C composites derived from metal-organic frameworks with superior microwave absorption. Carbon 2021, 173, 69–79.

    Article  CAS  Google Scholar 

  40. Zhao, Y. P.; Zuo, X. Q.; Guo, Y.; Huang, H.; Zhang, H.; Wang, T.; Wen, N. X.; Chen, H.; Cong, T. Z.; Muhammad, J. et al. Structural engineering of hierarchical aerogels comprised of multi-dimensional gradient carbon nanoarchitectures for highly efficient microwave absorption. Nano-Micro Lett. 2021, 13, 144.

    Article  CAS  Google Scholar 

  41. Sun, X. X.; Li, Y. B.; Huang, Y. X.; Cheng, Y. J.; Wang, S. S.; Yin, W. L. Achieving super broadband electromagnetic absorption by optimizing impedance match of rGO sponge metamaterials. Adv. Funct. Mater. 2022, 32, 2107508.

    Article  CAS  Google Scholar 

  42. Yang, L. J.; Lv, H. L.; Li, M.; Zhang, Y.; Liu, J. C.; Yang, Z. H. Multiple polarization effect of shell evolution on hierarchical hollow C@MnO2 composites and their wideband electromagnetic wave absorption properties. Chem. Eng. J. 2020, 392, 123666.

    Article  CAS  Google Scholar 

  43. Yang, Z. H.; Lv, H. L.; Wu, R. B. Rational construction of graphene oxide with MOF-derived porous NiFe@C nanocubes for high-performance microwave attenuation. Nano Res. 2016, 9, 3671–3682.

    Article  CAS  Google Scholar 

  44. Bi, Y. X.; Ma, M. L.; Liao, Z. J.; Tong, Z. Y.; Chen, Y.; Wang, R. Z.; Ma, Y.; Wu, G. L. One-dimensional Ni@Co/C@PPy composites for superior electromagnetic wave absorption. J. Colloid Interface Sci. 2022, 605, 483–492.

    Article  CAS  Google Scholar 

  45. Li, X.; Wang, Z. L.; Xiang, Z.; Zhu, X. J.; Dong, Y. Y.; Huang, C.; Cai, L.; Lu, W. Biconical prisms Ni@C composites derived from metal-organic frameworks with an enhanced electromagnetic wave absorption. Carbon 2021, 184, 115–126.

    Article  CAS  Google Scholar 

  46. Wang, Y. Q.; Wang, H. G.; Ye, J. H.; Shi, L. Y.; Feng, X. Magnetic CoFe alloy@C nanocomposites derived from ZnCo-MOF for electromagnetic wave absorption. Chem. Eng. J. 2020, 383, 123096.

    Article  CAS  Google Scholar 

  47. Liu, G. L.; Liu, X. F.; Song, Z. M.; Sun, X.; Li, Y.; Shui, J. L.; Yu, R. H. Hollow double-shell structured void@SiO2@Co-C composite for broadband electromagnetic wave absorption. Chem. Eng. J. 2021, 417, 128093.

    Article  CAS  Google Scholar 

  48. Ning, M. Q.; Man, Q. K.; Tan, G. G.; Lei, Z. K.; Li, J. B.; Li, R. W. Ultrathin MoS2 nanosheets encapsulated in hollow carbon spheres: A case of a dielectric absorber with optimized impedance for efficient microwave absorption. ACS Appl. Mater. Interfaces 2020, 12, 20785–20796.

    Article  CAS  Google Scholar 

  49. Zhao, Z. X.; Xu, S. W.; Du, Z. J.; Jiang, C.; Huang, X. Z. Metal-organic framework-based PB@MoS2 core-shell microcubes with high efficiency and broad bandwidth for microwave absorption performance. ACS Sustainable Chem. Eng. 2019, 7, 7183–7192.

    Article  CAS  Google Scholar 

  50. Wang, Y.; Di, X. C.; Fu, Y. Q.; Wu, X. M.; Cao, J. T. Facile synthesis of the three-dimensional flower-like ZnFe2O4@MoS2 composite with heterogeneous interfaces as a high-efficiency absorber. J. Colloid Interface Sci. 2021, 587, 561–573.

    Article  CAS  Google Scholar 

  51. Wang, X. Y.; Zhu, T.; Chang, S. C.; Lu, Y. K.; Mi, W. B.; Wang, W. 3D nest-like architecture of core-shell CoFe2O4@1T/2H-MoS2 composites with tunable microwave absorption performance. ACS Appl. Mater. Interfaces 2020, 12, 11252–11264.

    Article  CAS  Google Scholar 

  52. Fang, G.; Liu, C. Y.; Yang, Y.; Peng, K. S.; Cao, Y. F.; Jiang, T.; Zhang, Y. T.; Zhang, Y. J. Regulating percolation threshold via dual conductive phases for high-efficiency microwave absorption performance in C and X bands. ACS Appl. Mater. Interfaces 2021, 13, 37517–37526.

    Article  CAS  Google Scholar 

  53. Pan, J. J.; Sun, X.; Jin, Z. Z.; Wang, T.; Zhao, Q. L.; Qu, H. J.; He, J. P. Constructing two-dimensional lamellar monometallic carbon nanocomposites by sodium chloride hard template for lightweight microwave scattering and absorption. Compos. Part B Eng. 2022, 228, 109422.

    Article  CAS  Google Scholar 

  54. Zhang, J. J.; Li, Z. H.; Qi, X. S.; Gong, X.; Xie, R.; Deng, C. Y.; Zhong, W.; Du, Y. W. Constructing flower-like core@shell MoSe2-based nanocomposites as a novel and high-efficient microwave absorber. Compos. Part B Eng. 2021, 222, 109067.

    Article  CAS  Google Scholar 

  55. Han, Y. X.; Ruan, K. P.; Gu, J. W. Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances. Nano Res. 2022, 15, 4747–4755.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fund of Fok Ying Tung Education Foundation, the Natural Science Foundation of Guizhou province (No. 2017-1034), the Major Research Project of innovative Group of Guizhou province (No. 2018-013), the National Natural Science Foundation of China (Nos. 11604060, 52101010 and 11964006), and the Foundation of the National Key Project for Basic Research (No. 2012CB932304) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaosi Qi or Wei Zhong.

Electronic Supplementary Material

12274_2022_4468_MOESM1_ESM.pdf

Magnetic-dielectric synergy and interfacial engineering to design yolk–shell structured CoNi@void@C and CoNi@void@C@MoS2 nanocomposites with tunable and strong wideband microwave absorption

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Qi, X., Gong, X. et al. Magnetic-dielectric synergy and interfacial engineering to design yolk–shell structured CoNi@void@C and CoNi@void@C@MoS2 nanocomposites with tunable and strong wideband microwave absorption. Nano Res. 15, 6761–6771 (2022). https://doi.org/10.1007/s12274-022-4468-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4468-2

Keywords

Navigation