Skip to main content
Log in

Amorphous molybdenum sulfide and its Mo-S motifs: Structural characteristics, synthetic strategies, and comprehensive applications

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Amorphous materials are one kind of nonequilibrium materials and have become one of the most active research fields. Compared with crystalline solids, the theory of amorphous materials is still in infancy because their characteristic of atomic arrangement is more like liquid and has no long-range periodicity. Recently, as the representative of amorphous materials, amorphous molybdenum sulfide (a-MoSx) with unique physical and chemical properties has been studied extensively. However, considerable debate surrounds the structure—property relationships of a-MoSx owing to its diverse Mo-S motifs. Herein, we summarize recent discoveries and research results regarding a-MoSx, whose structural characteristics, synthetic strategies, formation criteria, and comprehensive applications are discussed in detail. Finally, this review is ended with our personal insights and critical outlooks over the development of a-MoSx.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hong, S.; Lee, C. S.; Lee, M. H.; Lee, Y.; Ma, K. Y.; Kim, G.; Yoon, S. I.; Ihm, K.; Kim, K. J.; Shin, T. J. et al. Ultralow-dielectric-constant amorphous boron nitride. Nature 2020, 582, 511–514.

    Article  CAS  Google Scholar 

  2. Zou, X.; Liu, Y. P.; Li, G. D.; Wu, Y. Y.; Liu, D. P.; Li, W.; Li, H. W.; Wang, D. J.; Zhang, Y.; Zou, X. X. Ultrafast formation of amorphous bimetallic hydroxide films on 3D conductive sulfide nanoarrays for large-current-density oxygen evolution electrocatalysis. Adv. Mater. 2017, 29, 1700404.

    Article  Google Scholar 

  3. Jin, Y. H.; Li, A. Z.; Hazelton, S. G.; Liang, S.; John, C. L.; Selid, P. D.; Pierce, D. T.; Zhao, J. X. Amorphous silica nanohybrids: Synthesis, properties and applications. Coord. Chem. Rev. 2009, 253, 2998–3014.

    Article  CAS  Google Scholar 

  4. Zhang, X.; Luo, Z. M.; Yu, P.; Cai, Y. Q.; Du, Y. H.; Wu, D. X.; Gao, S.; Tan, C. L.; Li, Z.; Ren, M. Q. et al. Lithiation-induced amorphization of Pd3P2S8 for highly efficient hydrogen evolution. Nat. Catal. 2018, 1, 460–468.

    Article  CAS  Google Scholar 

  5. Zhuang, Z. C.; Huang, J. Z.; Li, Y.; Zhou, L.; Mai, L. Q. The holy grail in platinum-free electrocatalytic hydrogen evolution: Molybdenum-based catalysts and recent advances. ChemElectroChem 2019, 6, 3570–3589.

    Article  CAS  Google Scholar 

  6. Toh, C. T.; Zhang, H. J.; Lin, J. H.; Mayorov, A. S.; Wang, Y. P.; Orofeo, C. M.; Ferry, D. B.; Andersen, H.; Kakenov, N.; Guo, Z. L. et al. Synthesis and properties of free-standing monolayer amorphous carbon. Nature 2020, 577, 199–203.

    Article  CAS  Google Scholar 

  7. Liu, J. Z.; Guo, L. In situ self-reconstruction inducing amorphous species: A key to electrocatalysis. Matter 2021, 4, 2850–2873.

    Article  CAS  Google Scholar 

  8. Fu, W.; Yang, S. Y.; Yang, H.; Guo, B.; Huang, Z. Q. 2D amorphous MoS3 nanosheets with porous network structures for scavenging toxic metal ions from synthetic acid mine drainage. J. Mater. Chem. A 2019, 7, 18799–18806.

    Article  CAS  Google Scholar 

  9. Deng, Y. L.; Ting, L. R. L.; Neo, P. H. L.; Zhang, Y. J.; Peterson, A. A.; Yeo, B. S. Operando Raman spectroscopy of amorphous molybdenum sulfide (MoSx) during the electrochemical hydrogen evolution reaction: Identification of sulfur atoms as catalytically active sites for H+ reduction. ACS Catal. 2016, 6, 7790–7798.

    Article  CAS  Google Scholar 

  10. Wu, L. F.; Longo, A.; Dzade, N. Y.; Sharma, A.; Hendrix, M. M. R. M.; Bol, A. A.; de Leeuw, N. H.; Hensen, E. J. M.; Hofmann, J. P. The origin of high activity of amorphous MoS2 in the hydrogen evolution reaction. ChemSusChem 2019, 12, 4383–4389.

    Article  CAS  Google Scholar 

  11. Xie, J. F.; Xie, Y. Structural engineering of electrocatalysts for the hydrogen evolution reaction: Order or disorder. ChemCatChem 2015, 7, 2568–2580.

    Article  CAS  Google Scholar 

  12. Merki, D.; Hu, X. L. Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts. Energy Environ. Sci. 2011, 4, 3878–3888.

    Article  CAS  Google Scholar 

  13. Benck, J. D.; Chen, Z. B.; Kuritzky, L. Y.; Forman, A. J.; Jaramillo, T. F. Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: Insights into the origin of their catalytic activity. ACS Catal. 2012, 2, 1916–1923.

    Article  CAS  Google Scholar 

  14. Lassalle-Kaiser, B.; Merki, D.; Vrubel, H.; Gul, S.; Yachandra, V. K.; Hu, X. L.; Yano, J. Evidence from in situ X-ray absorption spectroscopy for the involvement of terminal disulfide in the reduction of protons by an amorphous molybdenum sulfide electrocatalyst. J. Am. Chem. Soc. 2015, 137, 314–321.

    Article  CAS  Google Scholar 

  15. Grutza, M. L.; Rajagopal, A.; Streb, C.; Kurz, P. Hydrogen evolution catalysis by molybdenum sulfides (MoSx): Are thiomolybdate clusters like [Mo3S13]2− suitable active site models. Sustainable Energy Fuels 2018, 2, 1893–1904.

    Article  CAS  Google Scholar 

  16. Ting, L. R. L.; Deng, Y. L.; Ma, L.; Zhang, Y. J.; Peterson, A. A.; Yeo, B. S. Catalytic activities of sulfur atoms in amorphous molybdenum sulfide for the electrochemical hydrogen evolution reaction. ACS Catal. 2016, 6, 861–867.

    Article  CAS  Google Scholar 

  17. Mabayoje, O.; Liu, Y.; Wang, M.; Shoola, A.; Ebrahim, A. M.; Frenkel, A. I.; Mullins, C. B. Electrodeposition of MoSx hydrogen evolution catalysts from sulfur-rich precursors. ACS Appl. Mater. Interfaces 2019, 11, 32879–32886.

    Article  CAS  Google Scholar 

  18. Hibble, S. J.; Walton, R. I.; Pickup, D. M.; Hannon, A. C. Amorphous MoS3: Clusters or chains? The structural evidence. J. Non-Cryst. Solids 1998, 232–234, 434–439.

    Article  Google Scholar 

  19. Müller, A.; Fedin, V.; Hegetschweiler, K.; Amrein, W. Characterization of amorphous substances by studying isotopically labelled compounds with FAB-MS: Evidence for extrusion of triangular Mo3IV clusters from a mixture of 92MoS3 and 100MoS3 by reaction with OH. J. Chem. Soc., Chem. Commun. 1992, 24, 1795–1796.

    Article  Google Scholar 

  20. Weber, T.; Muijsers, J. C.; Niemantsverdriet, J. W. Structure of amorphous MoS3. J. Phys. Chem. 1995, 99, 9194–9200.

    Article  CAS  Google Scholar 

  21. Müller, A.; Diemann, E.; Jostes, R.; Bögge, H. Transition metal thiometalates: Properties and significance in complex and bioinorganic chemistry. Angew. Chem., Int. Ed. 1981, 20, 934–955.

    Article  Google Scholar 

  22. Zhao, H. W.; Li, F. S.; Wang, S. X.; Guo, L. Wet chemical synthesis of amorphous nanomaterials with well-defined morphologies. Acc. Mater. Res. 2021, 2, 804–815.

    Article  CAS  Google Scholar 

  23. Ma, X.; Chen, W. R.; Li, Q.; Xue, L. J.; Peng, C. Nitrogen-doped hierarchical heterostructured aerophobic MoSx/Ni3S2 nanowires by one-pot synthesis: System engineering and synergistic effect in electrocatalysis of hydrogen evolution reaction. Energy Environ. Mater. 2021, 4, 658–663.

    Article  CAS  Google Scholar 

  24. Du, K. Z.; Zheng, L. R.; Wang, T. Y.; Zhuo, J. Q.; Zhu, Z. W.; Shao, Y. H.; Li, M. X. Electrodeposited Mo3S13 films from (NH4)2Mo3S132H2O for electrocatalysis of hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2017, 9, 18675–18681.

    Article  CAS  Google Scholar 

  25. Tran, P. D.; Tran, T. V.; Orio, M.; Torelli, S.; Truong, Q. D.; Nayuki, K.; Sasaki, Y.; Chiam, S. Y.; Yi, R.; Honma, I. et al. Coordination polymer structure and revisited hydrogen evolution catalytic mechanism for amorphous molybdenum sulfide. Nat. Mater. 2016, 15, 640–646.

    Article  CAS  Google Scholar 

  26. Guo, C. Y.; Shi, Y. M.; Lu, S. Y.; Yu, Y. F.; Zhang, B. Amorphous nanomaterials in electrocatalytic water splitting. Chin. J. Catal. 2021, 42, 1287–1296.

    Article  CAS  Google Scholar 

  27. Zhao, H. W.; Chen, X. J.; Wang, G. Z.; Qiu, Y. F.; Guo, L. Two-dimensional amorphous nanomaterials: Synthesis and applications. 2D Mater. 2019, 6, 032002.

    Article  CAS  Google Scholar 

  28. Hibble, S. J.; Wood, G. B. Modeling the structure of amorphous MoS3: A neutron diffraction and reverse Monte Carlo study. J. Am. Chem. Soc. 2004, 126, 959–965.

    Article  CAS  Google Scholar 

  29. Chang, Y. H.; Lin, C. T.; Chen, T. Y.; Hsu, C. L.; Lee, Y. H.; Zhang, W. J.; Wei, K. H.; Li, L. J. Highly efficient electrocatalytic hydrogen production by MoSx grown on graphene-protected 3D Ni foams. Adv. Mater. 2013, 25, 756–760.

    Article  CAS  Google Scholar 

  30. Merki, D.; Vrubel, H.; Rovelli, L.; Fierro, S.; Hu, X. L. Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chem. Sci. 2012, 3, 2515–2525.

    Article  CAS  Google Scholar 

  31. Ma, L. J.; Wang, Q.; Islam, S. M.; Liu, Y. C.; Ma, S. L.; Kanatzidis, M. G. Highly selective and efficient removal of heavy metals by layered double hydroxide intercalated with the MoS42− ion. J. Am. Chem. Soc. 2016, 138, 2858–2866.

    Article  CAS  Google Scholar 

  32. Oh, Y.; Morris, C. D.; Kanatzidis, M. G. Polysulfide chalcogels with ion-exchange properties and highly efficient mercury vapor sorption. J. Am. Chem. Soc. 2012, 134, 14604–14608.

    Article  CAS  Google Scholar 

  33. Subrahmanyam, K. S.; Sarma, D.; Malliakas, C. D.; Polychronopoulou, K.; Riley, B. J.; Pierce, D. A.; Chun, J.; Kanatzidis, M. G. Chalcogenide aerogels as sorbents for radioactive iodine. Chem. Mater. 2015, 27, 2619–2626.

    Article  CAS  Google Scholar 

  34. Xie, L. X.; Yu, Z. H.; Islam, S. M.; Shi, K. R.; Cheng, Y. H.; Yuan, M. W.; Zhao, J.; Sun, G. B.; Li, H. F.; Ma, S. L. et al. Remarkable acid stability of polypyrrole-MoS4: A highly selective and efficient scavenger of heavy metals over a wide pH range. Adv. Funct. Mater. 2018, 28, 1800502.

    Article  Google Scholar 

  35. Das, N. Recovery of precious metals through biosorption—A review. Hydrometallurgy 2010, 103, 180–189.

    Article  CAS  Google Scholar 

  36. Wang, Z. Y.; Mi, B. X. Environmental applications of 2D molybdenum disulfide (MoS2) nanosheets. Environ. Sci. Technol. 2017, 51, 8229–8244.

    Article  CAS  Google Scholar 

  37. Wang, Z. Y.; Sim, A.; Urban, J. J.; Mi, B. X. Removal and recovery of heavy metal ions by two-dimensional MoS2 nanosheets: Performance and mechanisms. Environ. Sci. Technol. 2018, 52, 9741–9748.

    Article  CAS  Google Scholar 

  38. Yuan, M. W.; Yao, H. Q.; Xie, L. X.; Liu, X. W.; Wang, H.; Islam, S. M.; Shi, K. R.; Yu, Z. H.; Sun, G. B.; Li, H. F. et al. Polypyrrole-Mo3S13: An efficient sorbent for the capture of Hg2+ and highly selective extraction of Ag+ over Cu2+. J. Am. Chem. Soc. 2020, 142, 1574–1583.

    Article  CAS  Google Scholar 

  39. Yang, L. X.; Xie, L. X.; Chu, M. L.; Wang, H.; Yuan, M. W.; Yu, Z. H.; Wang, C. N.; Yao, H. Q.; Islam, S. M.; Shi, K. R. et al. Mo3S132− intercalated layered double hydroxide: Highly selective removal of heavy metals and simultaneous reduction of Ag+ ions to metallic Ag0 ribbons. Angew. Chem., Int. Ed. 2022, 61, e202112511.

    CAS  Google Scholar 

  40. Xi, F. X.; Bogdanoff, P.; Harbauer, K.; Plate, P.; Höhn, C.; Rappich, J.; Wang, B.; Han, X. Y.; van de Krol, R.; Fiechter, S. Structural transformation identification of sputtered amorphous MoS. as an efficient hydrogen-evolving catalyst during electrochemical activation. ACS Catal. 2019, 9, 2368–2380.

    Article  CAS  Google Scholar 

  41. Ding, R. M.; Wang, M. C.; Wang, X. F.; Wang, H. X.; Wang, L. C.; Mu, Y. W.; Lv, B. L. N-doped amorphous MoSx. for the hydrogen evolution reaction. Nanoscale 2019, 11, 11217–11226.

    Article  CAS  Google Scholar 

  42. Ma, M. Z.; Zhang, S. P.; Wang, L. F.; Yao, Y.; Shao, R. W.; Shen, L.; Yu, L.; Dai, J. Y.; Jiang, Y.; Cheng, X. L. et al. Harnessing the volume expansion of MoS3 anode by structure engineering to achieve high performance beyond lithium-based rechargeable batteries. Adv. Mater. 2021, 33, 2106232.

    Article  CAS  Google Scholar 

  43. Chen, H. H.; Ke, G. X.; Wu, X. C.; Li, W. Q.; Li, Y. L.; Mi, H. W.; Sun, L. N.; Zhang, Q. L.; He, C. X.; Ren, X. Z. Amorphous MoS3 decoration on 2D functionalized MXene as a bifunctional electrode for stable and robust lithium storage. Chem. Eng. J. 2021, 406, 126775.

    Article  CAS  Google Scholar 

  44. Ye, H. L.; Ma, L.; Zhou, Y.; Wang, L.; Han, N.; Zhao, F. P.; Deng, J.; Wu, T. P.; Li, Y. G.; Lu, J. Amorphous MoS3 as the sulfur-equivalent cathode material for room-temperature Li-S and Na-S batteries. Proc. Natl. Acad. Sci. USA 2017, 114, 13091–13096.

    Article  CAS  Google Scholar 

  45. Shafaei-Fallah, M.; Rothenberger, A.; Katsoulidis, A. P.; He, J. Q.; Malliakas, C. D.; Kanatzidis, M. G. Extraordinary selectivity of CoMo3S13 chalcogel for C2H6 and CO2 adsorption. Adv. Mater. 2011, 23, 4857–4860.

    Article  CAS  Google Scholar 

  46. Bag, S.; Gaudette, A. F.; Bussell, M. E.; Kanatzidis, M. G. Spongy chalcogels of non-platinum metals act as effective hydrodesulfurization catalysts. Nat. Chem. 2009, 1, 217–224.

    Article  CAS  Google Scholar 

  47. Chang, C. H.; Chan, S. S. Infrared and Raman studies of amorphous MoS3 and poorly crystalline MoS2. J. Catal. 1981, 72, 139–148.

    Article  CAS  Google Scholar 

  48. Jiao, H. J.; Li, Y. W.; Delmon, B.; Halet, J. F. The structure and possible catalytic sites of Mo3S9 as a model of amorphous molybdenum trisulfide: A computational study. J. Am. Chem. Soc. 2001, 123, 7334–7339.

    Article  CAS  Google Scholar 

  49. Wei, W. T.; Lu, Y. Z.; Chen, W.; Chen, S. W. One-pot synthesis, photoluminescence, and electrocatalytic properties of subnanometer-sized copper clusters. J. Am. Chem. Soc. 2011, 133, 2060–2063.

    Article  CAS  Google Scholar 

  50. Li, G.; Jin, R. C. Atomically precise gold nanoclusters as new model catalysts. Acc. Chem. Res. 2013, 46, 1749–1758.

    Article  CAS  Google Scholar 

  51. Jin, R. C. Atomically precise metal nanoclusters: Stable sizes and optical properties. Nanoscale 2015, 7, 1549–1565.

    Article  CAS  Google Scholar 

  52. Lei, Z.; Wan, X. K.; Yuan, S. F.; Guan, Z. J.; Wang, Q. M. Alkynyl approach toward the protection of metal nanoclusters. Acc. Chem. Res. 2018, 51, 2465–2474.

    Article  CAS  Google Scholar 

  53. Kang, X.; Li, Y. W.; Zhu, M. Z.; Jin, R. C. Atomically precise alloy nanoclusters: Syntheses, structures, and properties. Chem. Soc. Rev. 2020, 49, 6443–6514.

    Article  Google Scholar 

  54. Guo, F. S.; Hou, Y. D.; Asiri, A. M.; Wang, X. C. Assembly of protonated mesoporous carbon nitrides with co-catalytic [Mo3S13]2− clusters for photocatalytic hydrogen production. Chem. Commun. 2017, 53, 13221–13224.

    Article  CAS  Google Scholar 

  55. Luo, J. M.; Fu, K. X.; Sun, M.; Yin, K.; Wang, D.; Liu, X.; Crittenden, J. C. Phase-mediated heavy metal adsorption from aqueous solutions using two-dimensional layered MoS2. ACS Appl. Mater. Interfaces 2019, 11, 38789–38797.

    Article  CAS  Google Scholar 

  56. Zhang, Z. L.; Cai, J.; Zhu, H.; Zhuang, Z. C.; Xu, F. P.; Hao, J. C.; Lu, S. L.; Li, H. N.; Duan, F.; Du, M. L. Simple construction of ruthenium single atoms on electrospun nanofibers for superior alkaline hydrogen evolution: A dynamic transformation from clusters to single atoms. Chem. Eng. J. 2020, 392, 123655.

    Article  CAS  Google Scholar 

  57. Zhang, E. H.; Tao, L.; An, J. K.; Zhang, J. W.; Meng, L. Z.; Zheng, X. B.; Wang, Y.; Li, N.; Du, S. X.; Zhang, J. T. et al. Engineering the local atomic environments of indium single-atom catalysts for efficient electrochemical production of hydrogen peroxide. Angew. Chem., Int. Ed. 2022, 61, e202117347.

    CAS  Google Scholar 

  58. Devan, R. S.; Patil, R. A.; Lin, J. H.; Ma, Y. R. One-dimensional metal-oxide nanostructures: Recent developments in synthesis, characterization, and applications. Adv. Funct. Mater. 2012, 22, 3326–3370.

    Article  CAS  Google Scholar 

  59. Huo, D.; Kim, M. J.; Lyu, Z.; Shi, Y. F.; Wiley, B. J.; Xia, Y. N. One-dimensional metal nanostructures: From colloidal syntheses to applications. Chem. Rev. 2019, 119, 8972–9073.

    Article  CAS  Google Scholar 

  60. Wang, B. Q.; Chen, S. H.; Zhang, Z. D.; Wang, D. S. Low-dimensional material supported single-atom catalysts for electrochemical CO2 reduction. SmartMat 2022, 3, 84–110.

    Article  CAS  Google Scholar 

  61. Zhao, M. T.; Lu, Q. P.; Ma, Q. L.; Zhang, H. Two-dimensional metal-organic framework nanosheets. Small Methods 2017, 1, 1600030.

    Article  Google Scholar 

  62. Guan, Z. L.; Li, X. M.; Wu, Y.; Chen, Z.; Huang, X. D.; Wang, D. B.; Yang, Q.; Liu, J. L.; Tian, S. H.; Chen, X. Y. et al. AgBr nanoparticles decorated 2D/2D GO/Bi2WO6 photocatalyst with enhanced photocatalytic performance for the removal of tetracycline hydrochloride. Chem. Eng. J. 2021, 410, 128283.

    Article  CAS  Google Scholar 

  63. Zhang, Z. H.; Penev, E. S.; Yakobson, B. I. Two-dimensional boron: Structures, properties and applications. Chem. Soc. Rev. 2017, 46, 6746–6763.

    Article  CAS  Google Scholar 

  64. Fan, F. R.; Wang, R. X.; Zhang, H.; Wu, W. Z. Emerging beyond-graphene elemental 2D materials for energy and catalysis applications. Chem. Soc. Rev. 2021, 50, 10983–11031.

    Article  CAS  Google Scholar 

  65. Xu, Q.; Zhang, J.; Wang, D. S.; Li, Y. D. Single-atom site catalysts supported on two-dimensional materials for energy applications. Chin. Chem. Lett. 2021, 32, 3771–3781.

    Article  CAS  Google Scholar 

  66. Cheng, J. L.; Wang, D. S. 2D materials modulating layered double hydroxides for electrocatalytic water splitting. Chin. J. Catal. 2022, 43, 1380–1398.

    Article  CAS  Google Scholar 

  67. Han, A. L.; Zhou, X. F.; Wang, X. J.; Liu, S.; Xiong, Q. H.; Zhang, Q. H.; Gu, L.; Zhuang, Z. C.; Zhang, W. J.; Li, F. X. et al. One-step synthesis of single-site vanadium substitution in 1T-WS2 monolayers for enhanced hydrogen evolution catalysis. Nat. Commun. 2021, 12, 709.

    Article  CAS  Google Scholar 

  68. Wang, P. P.; Sun, H. Y.; Ji, Y. J.; Li, W. H.; Wang, X. Three-dimensional assembly of single-layered MoS2. Adv. Mater. 2014, 26, 964–969.

    Article  CAS  Google Scholar 

  69. Qiu, H. J.; Du, P.; Hu, K. L.; Gao, J. J.; Li, H. L.; Liu, P.; Ina, T.; Ohara, K.; Ito, Y.; Chen, M. W. Metal and nonmetal codoped 3D nanoporous graphene for efficient bifunctional electrocatalysis and rechargeable Zn-air batteries. Adv. Mater. 2019, 31, 1900843.

    Article  Google Scholar 

  70. Vyatskikh, A.; Delalande, S.; Kudo, A.; Zhang, X.; Portela, C. M.; Greer, J. R. Additive manufacturing of 3D nano-architected metals. Nat. Commun. 2018, 9, 593.

    Article  Google Scholar 

  71. Müller, A.; Nolte, W. O.; Krebs, B. [(S2)2Mo(S2)2Mo(S2)2]2−, a novel complex containing only S22− ligands and a Mo-Mo bond. Angew. Chem., Int. Ed. 1978, 17, 279.

    Article  Google Scholar 

  72. Müller, A.; Bhattacharyya, R. G.; Pfefferkorn, B. Eine einfache darstellung der binären metall-schwefel-cluster [Mo3S13]2− und [Mo2S12]2− aus MoO42− in praktisch quantitativer ausbeute. Chem. Ber. 1979, 112, 778–780.

    Article  Google Scholar 

  73. Müller, A. Coordination chemistry of Mo- and W-S compounds and some aspects of hydrodesulfurization catalysis. Polyhedron 1986, 5, 323–340.

    Article  Google Scholar 

  74. Müller, A.; Jaegermann, W.; Enemark, J. H. Disulfur complexes. Coord. Chem. Rev. 1982, 46, 245–280.

    Article  Google Scholar 

  75. Müller, A.; Sarkar, S.; Bhattacharyya, R. G.; Pohl, S.; Dartmann, M. Directed synthesis of [Mo3S13]2−, an isolated cluster containing sulfur atoms in three different states of bonding. Angew. Chem., Int. Ed. 1978, 17, 535.

    Article  Google Scholar 

  76. Lei, Y. G.; Yang, M. Q.; Hou, J. H.; Wang, F.; Cui, E. T.; Kong, C.; Min, S. X. Thiomolybdate [Mo3S13]2− nanocluster: A molecular mimic of MoS2 active sites for highly efficient photocatalytic hydrogen evolution. Chem. Commun. 2018, 54, 603–606.

    Article  CAS  Google Scholar 

  77. Recatalá, D.; Llusar, R.; Gushchin, A. L.; Kozlova, E. A.; Laricheva, Y. A.; Abramov, P. A.; Sokolov, M. N.; Gomez, R.; Lana-Villarreal, T. Photogeneration of hydrogen from water by hybrid molybdenum sulfide clusters immobilized on titania. ChemSusChem 2015, 8, 148–157.

    Article  Google Scholar 

  78. Hibble, S. J.; Rice, D. A.; Pickup, D. M.; Beer, M. P. Mo K-edge EXAFS and S K-edge absorption studies of the amorphous molybdenum sulfides MoS4.7, MoS3, and MoS3nH2O (n ∼ 2). Inorg. Chem. 1995, 34, 5109–5113.

    Article  CAS  Google Scholar 

  79. Hibble, S. J.; Feaviour, M. R.; Almond, M. J. Chemical excision from amorphous MoS3; a quantitative EXAFS study. J. Chem. Soc., Dalton Trans. 2001, 6, 935–940.

    Article  Google Scholar 

  80. Staszak-Jirkovsky, J.; Malliakas, C. D.; Lopes, P. P.; Danilovic, N.; Kota, S. S.; Chang, K. C.; Genorio, B.; Strmcnik, D.; Stamenkovic, V. R.; Kanatzidis, M. G. et al. Design of active and stable Co-Mo-S. chalcogels as pH-universal catalysts for the hydrogen evolution reaction. Nat. Mater. 2016, 15, 197–203.

    Article  CAS  Google Scholar 

  81. Hung, N. T.; Yin, L. C.; Tran, P. D.; Saito, R. Simultaneous anionic and cationic redox in the Mo3S11 polymer electrode of a sodium-ion battery. J. Phys. Chem. C 2019, 123, 30856–30862.

    Article  CAS  Google Scholar 

  82. Lee, C. H.; Lee, S.; Lee, Y. K.; Jung, Y. C.; Ko, Y. I.; Lee, D. C.; Joh, H. I. Understanding the origin of formation and active sites for thiomolybdate [Mo3S13]2− clusters as hydrogen evolution catalyst through the selective control of sulfur atoms. ACS Catal. 2018, 8, 5221–5227.

    Article  CAS  Google Scholar 

  83. Zhou, G.; Shan Y.; Wang, L. L.; Hu, Y. Y.; Guo, J. H.; Hu, F. R.; Shen, J. C.; Gu, Y.; Cui, J. T.; Liu, L. L.; Wu, X. L. Photoinduced semiconductor-metal transition in ultrathin troilite FeS nanosheets to trigger efficient hydrogen evolution. Nat. Commun. 2021, 10, 399.

    Article  Google Scholar 

  84. Bélanger, D.; Laperriére, G.; Marsan, B. The electrodeposition of amorphous molybdenum sulfide. J. Electroanal. Chem. 1993, 347, 165–183.

    Article  Google Scholar 

  85. Bhattacharya, R. N.; Lee, C. Y.; Pollak, F. H.; Schleich, D. M. Optical study of amorphous MoS3: Determination of the fundamental energy gap. J. Non-Cryst. Solids 1987, 91, 235–242.

    Article  CAS  Google Scholar 

  86. Merki, D.; Fierro, S.; Vrubel, H.; Hu, X. L. Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem. Sci. 2011, 2, 1262–1267.

    Article  CAS  Google Scholar 

  87. Duong, T. M.; Nguyen, P. D.; Nguyen, A. D.; Le, L. T.; Nguyen, L. T.; Pham, H. V.; Tran, P. D. Insights into the electrochemical polymerization of [Mo3S13]2− generating amorphous molybdenum sulfide. Chem.Eur. J. 2019, 25, 13676–13682.

    Article  CAS  Google Scholar 

  88. Diemann, E.; Müller, A. Thio and seleno compounds of the transition metals with the d° cofiguration. Coord. Chem. Rev. 1973, 10, 79–122.

    Article  CAS  Google Scholar 

  89. Auborn, J. J.; Barberio, Y. L.; Hanson, K. J.; Schleich, D. M.; Martin, M. J. Amorphous molybdenum sulfide electrodes for nonaqueous electrochemical cells. J. Electrochem. Soc. 1987, 134, 580–586.

    Article  CAS  Google Scholar 

  90. Walton, R. I.; Dent, A. J.; Hibble, S. J. In situ investigation of the thermal decomposition of ammonium tetrathiomolybdate using combined time-resolved X-ray absorption spectroscopy and X-ray diffraction. Chem. Mater. 1998, 10, 3737–3745.

    Article  CAS  Google Scholar 

  91. Bulusheva, L. G.; Okotrub, A. V.; Kurenya, A. G.; Zhang, H. K.; Zhang, H. J.; Chen, X. H.; Song, H. H. Electrochemical properties of nitrogen-doped carbon nanotube anode in Li-ion batteries. Carbon 2011, 49, 4013–4023.

    Article  CAS  Google Scholar 

  92. Yang, Y.; Fei, H. L.; Ruan, G. D.; Xiang, C. S.; Tour, J. M. Edge-oriented MoS2 nanoporous films as flexible electrodes for hydrogen evolution reactions and supercapacitor devices. Adv. Mater. 2014, 26, 8163–8168.

    Article  CAS  Google Scholar 

  93. Wang, H. T.; Tsai, C.; Kong, D. S.; Chan, K. R.; Abild-Pedersen, F.; Nørskov, J. K.; Cui, Y. Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution. Nano Res. 2015, 8, 566–575.

    Article  CAS  Google Scholar 

  94. Oikawa, S.; Minamimoto, H.; Murakoshi, K. Reversible electrochemical tuning of optical property of single Au nano-bridged structure via electrochemical under potential deposition. Chem. Lett. 2017, 46, 1148–1150.

    Article  CAS  Google Scholar 

  95. Vrubel, H.; Hu, X. L. Growth and activation of an amorphous molybdenum sulfide hydrogen evolving catalyst. ACS Catal. 2013, 3, 2002–2011.

    Article  CAS  Google Scholar 

  96. Nguyen, A. D.; Pham, P. T.; Dam, A. T.; Tran, P. D. New insights into the formation of amorphous molybdenum sulfide from a tetrathiomolybdate precursor. Vietnam J. Sci. Technol. Eng. 2019, 61, 9–13.

    Article  Google Scholar 

  97. Truong, Q. D.; Kempaiah Devaraju, M.; Nguyen, D. N.; Gambe, Y.; Nayuki, K.; Sasaki, Y.; Tran, P. D.; Honma, I. Disulfide-bridged (Mo3S11) cluster polymer: Molecular dynamics and application as electrode material for a rechargeable magnesium battery. Nano Lett. 2016, 16, 5829–5835.

    Article  CAS  Google Scholar 

  98. Subrahmanyam, K. S.; Malliakas, C. D.; Sarma, D.; Armatas, G. S.; Wu, J. S.; Kanatzidis, M. G. Ion-exchangeable molybdenum sulfide porous chalcogel: Gas adsorption and capture of iodine and mercury. J. Am. Chem. Soc. 2015, 137, 13943–13948.

    Article  CAS  Google Scholar 

  99. Nai, J. W.; Kang, J. X.; Guo, L. Tailoring the shape of amorphous nanomaterials: Recent developments and applications. Sci. China Mater. 2015, 58, 44–59.

    Article  CAS  Google Scholar 

  100. Kim, Y.; Ha, K. H.; Oh, S. M.; Lee, K. T. High-capacity anode materials for sodium-ion batteries. Chem.—Eur. J. 2014, 20, 11980–11992.

    Article  CAS  Google Scholar 

  101. Kornienko, N.; Resasco, J.; Becknell, N.; Jiang, C. M.; Liu, Y. S.; Nie, K. Q.; Sun, X. H.; Guo, J. H.; Leone, S. R.; Yang, P. D. Operando spectroscopic analysis of an amorphous cobalt sulfide hydrogen evolution electrocatalyst. J. Am. Chem. Soc. 2015, 137, 7448–7455.

    Article  CAS  Google Scholar 

  102. Li, Y. M.; Xu, S. Y.; Wu, X. Y.; Yu, J. Z.; Wang, Y. S.; Hu, Y. S.; Li, H.; Chen, L. Q.; Huang, X. J. Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries. J. Mater. Chem. A 2015, 3, 71–77.

    Article  CAS  Google Scholar 

  103. Kuang, P. Y.; Tong, T.; Fan, K.; Yu, J. G. In situ fabrication of Ni-Mo bimetal sulfide hybrid as an efficient electrocatalyst for hydrogen evolution over a wide pH range. ACS Catal. 2017, 7, 6179–6187.

    Article  CAS  Google Scholar 

  104. Shao, H. Y.; He, L. Q.; Lin, H. J.; Li, H. W. Progress and trends in magnesium-based materials for energy-storage research: A review. Energy Technol. 2018, 6, 445–458.

    Article  Google Scholar 

  105. Chen, H. C.; Qin, Y. L.; Cao, H. J.; Song, X. X.; Huang, C. H.; Feng, H. B.; Zhao, X. S. Synthesis of amorphous nickel-cobalt-manganese hydroxides for supercapacitor-battery hybrid energy storage system. Energy Storage Mater. 2019, 17, 194–203.

    Article  Google Scholar 

  106. Doan-Nguyen, V. V. T.; Subrahmanyam, K. S.; Butala, M. M.; Gerbec, J. A.; Islam, S. M.; Kanipe, K. N.; Wilson, C. E.; Balasubramanian, M.; Wiaderek, K. M.; Borkiewicz, O. J. et al. Molybdenum polysulfide chalcogels as high-capacity, anion-redox-driven electrode materials for Li-ion batteries. Chem. Mater. 2016, 28, 8357–8365.

    Article  CAS  Google Scholar 

  107. Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856–1866.

    Article  CAS  Google Scholar 

  108. Cao, Y. L.; Guo, Y. B.; Chen, Z. X.; Yang, W. F.; Li, K. R.; He, X. Y.; Li, J. M. Highly sensitive self-powered pressure and strain sensor based on crumpled MXene film for wireless human motion detection. Nano Energy 2022, 92, 106689.

    Article  CAS  Google Scholar 

  109. Li, J. M.; Chen, J. M.; Wang, H.; Xiao, X. All-MXene cotton-based supercapacitor-powered human body thermal management system. ChemElectroChem 2021, 8, 648–655.

    Article  CAS  Google Scholar 

  110. Li, J. M.; Zhuang, Y. L.; Chen, J. M.; Li, B. X.; Wang, L. L.; Liu, S. J.; Zhao, Q. Two-dimensional materials for electrochromic applications. EnergyChem 2021, 3, 100060.

    Article  CAS  Google Scholar 

  111. Jawad, A.; Liao, Z. W.; Zhou, Z. H.; Khan, A.; Wang, T.; Ifthikar, J.; Shahzad, A.; Chen, Z. L.; Chen, Z. Q. Fe-MoS4: An effective and stable LDH-based adsorbent for selective removal of heavy metals. ACS Appl. Mater. Interfaces 2017, 9, 28451–28463.

    Article  CAS  Google Scholar 

  112. Liu, J. Y.; Zhang, S. Z.; Jiang, D. E.; Doherty, C. M.; Hill, A. J.; Cheng, C.; Park, H. B.; Lin, H. Q. Highly polar but amorphous polymers with robust membrane CO2/N2 separation performance. Joule 2019, 3, 1881–1894.

    Article  CAS  Google Scholar 

  113. Yampolskii, Y.; Belov, N.; Alentiev, A. Perfluorinated polymers as materials of membranes for gas and vapor separation. J. Membr. Sci. 2020, 598, 117779.

    Article  CAS  Google Scholar 

  114. Ishitsuka, M.; Hara, S.; Mukaida, M.; Haraya, K.; Kita, K.; Kato, K. Hydrogen separation from dry gas mixtures using a membrane module consisting of palladium-coated amorphous-alloy. Desalination 2008, 234, 293–299.

    Article  CAS  Google Scholar 

  115. Schlapbach, L.; Züttel, A. Hydrogen-storage materials for mobile applications. Nature 2001, 414, 353–358.

    Article  CAS  Google Scholar 

  116. Tatin, A.; Bonin, J.; Robert, M. A case for electrofuels. ACS Energy Lett. 2016, 1, 1062–1064.

    Article  CAS  Google Scholar 

  117. Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.

    Article  CAS  Google Scholar 

  118. Ardo, S.; Rivas, D. F.; Modestino, M. A.; Greiving, V. S.; Abdi, F. F.; Alarcon Llado, E.; Artero, V.; Ayers, K.; Battaglia, C.; Becker, J. P. et al. Pathways to electrochemical solar-hydrogen technologies. Energy Environ. Sci. 2018, 11, 2768–2783.

    Article  CAS  Google Scholar 

  119. Hinnemann, B.; Moses, P. G.; Bonde, J.; Jørgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Nørskov, J. K. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 2005, 127, 5308–5309.

    Article  CAS  Google Scholar 

  120. He, Q. Y.; Wang, L. L.; Yin, K.; Lou, S. L. Vertically aligned ultrathin 1T-WS2 nanosheets enhanced the electrocatalytic hydrogen evolution. Nanoscale Res. Lett. 2018, 13, 167.

    Article  Google Scholar 

  121. Cao, Y. Roadmap and direction toward high-performance MoS2 hydrogen evolution catalysts. ACS Nano 2021, 15, 11014–11039.

    Article  CAS  Google Scholar 

  122. Vrubel, H.; Merki, D.; Hu, X. L. Hydrogen evolution catalyzed by MoS3 and MoS2 particles. Energy Environ. Sci. 2012, 5, 6136–6144.

    Article  CAS  Google Scholar 

  123. Yang, J. R.; Li, W. H.; Tan, S. D.; Xu, K. N.; Wang, Y.; Wang, D. S.; Li, Y. D. The electronic metal-support interaction directing the design of single atomic site catalysts: Achieving high efficiency towards hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 19085–19091.

    Article  CAS  Google Scholar 

  124. Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

    Article  CAS  Google Scholar 

  125. Zhuang, Z. C.; Li, Y.; Huang, J. Z.; Li, Z. L.; Zhao, K. N.; Zhao, Y. L.; Xu, L.; Zhou, L.; Moskaleva, L. V.; Mai, L. Q. Sisyphus effects in hydrogen electrochemistry on metal silicides enabled by silicene subunit edge. Sci. Bull. 2019, 64, 617–624.

    Article  CAS  Google Scholar 

  126. Ye, C. L.; Peng, M.; Cui, T. T.; Tang, X. X.; Wang, D. S.; Jiao, M. L.; Miller, J. T.; Li, Y. D. Revealing the surface atomic arrangement of noble metal alkane dehydrogenation catalysts by a stepwise reduction-oxidation approach. Nano Res., in press, https://doi.org/10.1007/s12274-021-3636-0.

  127. Karunadasa, H. I.; Montalvo, E.; Sun, Y. J.; Majda, M.; Long, J. R.; Chang, C. J. A molecular MoS2 edge site mimic for catalytic hydrogen generation. Science 2012, 335, 698–702.

    Article  CAS  Google Scholar 

  128. Garrett, B. R.; Polen, S. M.; Click, K. A.; He, M. F.; Huang, Z. J.; Hadad, C. M.; Wu, Y. Y. Tunable molecular MoS2 edge-site mimics for catalytic hydrogen production. Inorg. Chem. 2016, 55, 3960–3966.

    Article  CAS  Google Scholar 

  129. Seo, B.; Joo, S. H. Recent advances in unveiling active sites in molybdenum sulfide-based electrocatalysts for the hydrogen evolution reaction. Nano Converg. 2017, 4, 19.

    Article  Google Scholar 

  130. Kiriya, D.; Lobaccaro, P.; Nyein, H. Y.; Taheri, P.; Hettick, M.; Shiraki, H.; Sutter-Fella, C. M.; Zhao, P. D.; Gao, W.; Maboudian, R. et al. General thermal texturization process of MoS2 for efficient electrocatalytic hydrogen evolution reaction. Nano Lett. 2016, 16, 4047–4053.

    Article  CAS  Google Scholar 

  131. Yang, L. J.; Zhou, W. J.; Lu, J.; Hou, D. M.; Ke, Y. T.; Li, G. Q.; Tang, Z. H.; Kang, X. W.; Chen, S. W. Hierarchical spheres constructed by defect-rich MoS2/carbon nanosheets for efficient electrocatalytic hydrogen evolution. Nano Energy 2016, 22, 490–498.

    Article  CAS  Google Scholar 

  132. Li, Y.; Yin, K.; Wang, L. L.; Lu, X. L.; Zhang, Y. Q.; Liu, Y. T.; Yan, D. F.; Song, Y. Z.; Luo, S. L. Engineering MoS2 nanomesh with holes and lattice defects for highly active hydrogen evolution reaction. Appl. Catal. B 2018, 239, 537–544.

    Article  CAS  Google Scholar 

  133. Pham, C. V.; Zana, A.; Arenz, M.; Thiele, S. [Mo3S13]2− cluster decorated sulfur-doped reduced graphene oxide as noble metal-free catalyst for hydrogen evolution reaction in polymer electrolyte membrane electrolyzers. ChemElectroChem 2018, 5, 2672–2680.

    Article  CAS  Google Scholar 

  134. Shang, Y. N.; Xu, X.; Gao, B. Y.; Ren, Z. F. Thiomolybdate [Mo3S13]2− nanoclusters anchored on reduced graphene oxidecarbon nanotube aerogels for efficient electrocatalytic hydrogen evolution. ACS Sustainable Chem. Eng. 2017, 5, 8908–8917.

    Article  CAS  Google Scholar 

  135. Rajagopal, A.; Venter, F.; Jacob, T.; Petermann, L.; Rau, S.; Tschierlei, S.; Streb, C. Homogeneous visible light-driven hydrogen evolution by the molecular molybdenum sulfide model [Mo2S12]2−. Sustainable Energy Fuels 2019, 3, 92–95.

    Article  CAS  Google Scholar 

  136. Ding, Q.; Song, B.; Xu, P.; Jin, S. Efficient electrocatalytic and photoelectrochemical hydrogen generation using MoS2 and related compounds. Chem 2016, 1, 699–726.

    Article  CAS  Google Scholar 

  137. Hellstern, T. R.; Kibsgaard, J.; Tsai, C.; Palm, D. W.; King, L. A.; Abild-Pedersen, F.; Jaramillo, T. F. Investigating catalyst-support interactions to improve the hydrogen evolution reaction activity of thiomolybdate [Mo3S13]2− nanoclusters. ACS Catal. 2017, 7, 7126–7130.

    Article  CAS  Google Scholar 

  138. Holzapfel, P. K. R.; Buhler, M.; Escalera-López, D.; Bierling, M.; Speck, F. D.; Mayrhofer, K. J. J.; Cherevko, S.; Pham, C. V.; Thiele, S. Fabrication of a robust PEM water electrolyzer based on non-noble metal cathode catalyst: [Mo3S13]2− clusters anchored to N-doped carbon nanotubes. Small 2020, 16, 2003161.

    Article  CAS  Google Scholar 

  139. Wang, L. L.; Liu, X.; Zhang, Q. F.; Zhou, G.; Pei, Y.; Chen, S. H.; Wang, J.; Rao, A. M.; Yang, H. G.; Lu, B. A. Quasi-one-dimensional Mo chains for efficient hydrogen evolution reaction. Nano Energy 2019, 61, 194–200.

    Article  CAS  Google Scholar 

  140. Wang, L. L.; Xie, L. B.; Zhao, W. W.; Liu, S. J.; Zhao, Q. Oxygen-facilitated dynamic active-site generation on strained MoS2 during photo-catalytic hydrogen evolution. Chem. Eng. J. 2021, 405, 127028.

    Article  CAS  Google Scholar 

  141. Cheng, X. L.; Wang, L. L.; Xie, L. B.; Sun, C.; Zhao, W. W.; Liu, X.; Zhuang, Z. C.; Liu, S. J.; Zhao, Q. Defect-driven selective oxidation of MoS2 nanosheets with photothermal effect for photocatalytic hydrogen evolution reaction. Chem. Eng. J. 2022, 439, 135757.

    Article  CAS  Google Scholar 

  142. Liu, M. M.; Li, H. X.; Liu, S. J.; Wang, L. L.; Xie, L. B.; Zhuang, Z. C.; Sun, C.; Wang, J.; Tang, M.; Sun, S. J. et al. Tailoring activation sites of metastable distorted 1T′-phase MoS2 by Ni doping for enhanced hydrogen evolution. Nano Res., in press, https://doi.org/10.1007/s12274-022-4267-9.

  143. Wang, S. H.; Wang, L. L.; Xie, L. B.; Zhao, W. W.; Liu, X.; Zhuang, Z. C.; Zhuang, Y. L.; Chen, J.; Liu, S. J.; Zhao, Q. Dislocation-strained MoS2 nanosheets for high-efficiency hydrogen evolution reaction. Nano Res., in press, https://doi.org/10.1007/s12274-022-4158-0.

  144. Chen, Y.; Lai, Z. C.; Zhang, X.; Fan, Z. X.; He, Q. Y.; Tan, C. L.; Zhang, H. Phase engineering of nanomaterials. Nat. Rev. Chem. 2020, 4, 243–256.

    Article  CAS  Google Scholar 

  145. Ali, J.; Lei, W. L.; Shahzad, A.; Ifthikar, J.; Aregay, G. G.; Shahib, I. I.; Elkhlifi, Z.; Chen, Z. L.; Chen, Z. Q. Regulating the redox centers of Fe through the enrichment of Mo moiety for persulfate activation: A new strategy to achieve maximum persulfate utilization efficiency. Water Res. 2020, 181, 115862.

    Article  CAS  Google Scholar 

  146. Wang, Z. P.; Pan, X. X.; Qian, S. Y.; Yang, G.; Du, F. L.; Yuan, X. The beauty of binary phases: A facile strategy for synthesis, processing, functionalization, and application of ultrasmall metal nanoclusters. Coord. Chem. Rev. 2021, 438, 213900.

    Article  CAS  Google Scholar 

  147. Yang, J. R.; Li, W. H.; Xu, K. N.; Tan, S. D.; Wang, D. S.; Li, Y. D. Regulating the tip effect on single-atom and cluster catalysts: Forming reversible oxygen species with high efficiency in chlorine evolution reaction. Angew. Chem., Int. Ed. 2022, 134, e202200366.

    Google Scholar 

  148. Huang, Z. J.; Luo, W. J.; Ma, L.; Yu, M. Z.; Ren, X. D.; He, M. F.; Polen, S.; Click, K.; Garrett, B.; Lu, J. et al. Dimeric [Mo2S12]2− cluster: A molecular analogue of MoS2 edges for superior hydrogen-evolution electrocatalysis. Angew. Chem., Int. Ed. 2015, 54, 15181–15185.

    Article  CAS  Google Scholar 

  149. Ronge, E.; Hildebrandt, S.; Grutza, M. L.; Klein, H.; Kurz, P.; Jooss, C. Structure of nanocrystalline, partially disordered MoS2+δ derived from HRTEM—An abundant material for efficient HER catalysis. Catalysts 2020, 10, 856.

    Article  CAS  Google Scholar 

  150. Min, S. M.; Hou, J. H.; Lei, Y. G.; Liu, X. Y.; Li, Y. N.; Xue, Y.; Cui, E. T.; Yan, W. J.; Hai, W. X.; Wang, F. CoAl-layered double hydroxide nanosheets as an active matrix to anchor an amorphous MoS. catalyst for efficient visible light hydrogen evolution. Chem. Commun. 2018, 54, 3243–3246.

    Article  CAS  Google Scholar 

  151. Kibsgaard, J.; Jaramillo, T. F.; Besenbacher, F. Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2− clusters. Nat. Chem. 2014, 6, 248–253.

    Article  CAS  Google Scholar 

  152. Benck, J. D.; Hellstern, T. R.; Kibsgaard, J.; Chakthranont, P.; Jaramillo, T. F. Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catal. 2014, 4, 3957–3971.

    Article  CAS  Google Scholar 

  153. Seo, B.; Jung, G. Y.; Lee, S. J.; Baek, D. S.; Sa, Y. J.; Ban, H. W.; Son, J. S.; Park, K.; Kwak, S. K.; Joo, S. H. Monomeric MoS42−-derived polymeric chains with active molecular units for efficient hydrogen evolution reaction. ACS Catal. 2019, 10, 652–662.

    Article  Google Scholar 

  154. Zhang, X. Q.; Cheng, X. B.; Zhang, Q. Nanostructured energy materials for electrochemical energy conversion and storage: A review. J. Energy Chem. 2016, 25, 967–984.

    Article  Google Scholar 

  155. You, B.; Tang, M. T.; Tsai, C.; Abild-Pedersen, F.; Zheng, X. L.; Li, H. Enhancing electrocatalytic water splitting by strain engineering. Adv. Mater. 2019, 31, 1807001.

    Article  Google Scholar 

  156. Wang, X. S.; Du, K. Z.; Wang, C.; Ma, L. X.; Zhao, B. L.; Yang, J. F.; Li, M. X.; Zhang, X. X.; Xue, M. Q.; Chen, J. T. Unique reversible conversion-type mechanism enhanced cathode performance in amorphous molybdenum polysulfide. ACS Appl. Mater. Interfaces 2017, 9, 38606–38611.

    Article  CAS  Google Scholar 

  157. Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202114450.

    CAS  Google Scholar 

  158. Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, 14, 2418–2423.

    Article  CAS  Google Scholar 

  159. Wang, L. L.; Zhou, G.; Luo, H.; Zhang, Q. F.; Wang, J.; Zhao, C. W.; Rao, A. M.; Xu, B.; Lu, B. A. Enhancing catalytic activity of tungsten disulfide through topology. Appl. Catal. B 2019, 256, 117802.

    Article  CAS  Google Scholar 

  160. Xie, L. B.; Wang, L. L.; Zhao, W. W.; Liu, S. J.; Huang, W.; Zhao, Q. WS2 moiré superlattices derived from mechanical flexibility for hydrogen evolution reaction. Nat. Commun. 2021, 12, 5070.

    Article  CAS  Google Scholar 

  161. Chen, J.; Tang, Y. M.; Wang, S. H.; Xie, L. B.; Chang, C.; Cheng, X. L.; Liu, M. M.; Wang, L. L.; Wang, L. H. Ingeniously designed Ni-Mo-S/ZnIn2S4 composite for multi-photocatalytic reaction systems. Chin. Chem. Lett. 2022, 33, 1468–1474.

    Article  CAS  Google Scholar 

  162. Nguyen, D. N.; Nguyen, L. N.; Nguyen, P. D.; Thu, T. V.; Nguyen, A. D.; Tran, P. D. Crystallization of amorphous molybdenum sulfide induced by electron or laser beam and its effect on H2-evolving activities. J. Phys. Chem. C 2016, 120, 28789–28794.

    Article  CAS  Google Scholar 

  163. Vrubel, H.; Moehl, T.; Grätzel, M.; Hu, X. L. Revealing and accelerating slow electron transport in amorphous molybdenum sulphide particles for hydrogen evolution reaction. Chem. Commun. 2013, 49, 8985–8987.

    Article  CAS  Google Scholar 

  164. Laursen, A. B.; Vesborg, P. C. K.; Chorkendorff, I. A high-porosity carbon molybdenum sulphide composite with enhanced electrochemical hydrogen evolution and stability. Chem. Commun. 2013, 49, 4965–4967.

    Article  CAS  Google Scholar 

  165. Li, Y. P.; Yu, Y. F.; Huang, Y. F.; Nielsen, R. A.; Goddard, W. A.; Li, Y.; Cao, L. Y. Engineering the composition and crystallinity of molybdenum sulfide for high-performance electrocatalytic hydrogen evolution. ACS Catal. 2015, 5, 448–455.

    Article  CAS  Google Scholar 

  166. Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

    Article  CAS  Google Scholar 

  167. Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

    Article  CAS  Google Scholar 

  168. Hao, J. C.; Zhuang, Z. C.; Hao, J. C.; Cao, K. C.; Hu, Y. X.; Wu, W. B.; Lu, S. L.; Wang, C.; Zhang, N.; Wang, D. S. et al. Strain relaxation in metal alloy catalysts steers the product selectivity of electrocatalytic CO2 reduction. ACS Nano 2022, 16, 3251–3263.

    Article  CAS  Google Scholar 

  169. Deng, Y. Q.; Liu, Z.; Wang, A. Z.; Sun, D. H.; Chen, Y. K.; Yang, L. J.; Pang, J. B.; Li, H.; Li, H. D.; Liu, H. et al. Oxygen-incorporated MoX (X: S, Se or P) nanosheets via universal and controlled electrochemical anodic activation for enhanced hydrogen evolution activity. Nano Energy 2019, 62, 338–347.

    Article  CAS  Google Scholar 

  170. Sanchez Casalongue, H. G.; Benck, J. D.; Tsai, C.; Karlsson, R. K. B.; Kaya, S.; Ng, M. L.; Pettersson, L. G. M.; Abild-Pedersen, F.; Nørskov, J. K.; Ogasawara, H. et al. Operando characterization of an amorphous molybdenum sulfide nanoparticle catalyst during the hydrogen evolution reaction. J. Phys. Chem. C 2014, 118, 29252–29259.

    Google Scholar 

  171. Lee, S. C.; Benck, J. D.; Tsai, C.; Park, J.; Koh, A. L.; Abild-Pedersen, F.; Jaramillo, T. F.; Sinclair, R. Chemical and phase evolution of amorphous molybdenum sulfide catalysts for electrochemical hydrogen production. ACS Nano 2016, 10, 624–632.

    Article  CAS  Google Scholar 

  172. Baloglou, A.; Plattner, M.; Ončák, M.; Grutza, M. L.; Kurz, P.; Beyer, M. K. [Mo3S13]2− as a model system for hydrogen evolution catalysis by MoSx:Probing protonation sites in the gas phase by infrared multiple photon dissociation spectroscopy. Angew. Chem., Int. Ed. 2021, 60, 5074–5077.

    Article  CAS  Google Scholar 

  173. Hibble, S. J.; Feaviour, M. R. An in situ structural study of the thermal decomposition reactions of the ammonium thiomolybdates, (NH4)2Mo2S12·2H2O and (NH4)2Mo3S13·2H2O. J. Mater. Chem. 2001, 11, 2607–2614.

    Article  CAS  Google Scholar 

  174. Diemann, E.; Müller, A.; Aymonino, P. J. Thermal decomposition of (NH4)2[Mo3S(S2)6nH2O. Z. Anorg. Allg. Chem. 1981, 479, 191–198.

    Article  CAS  Google Scholar 

  175. Huntley, D. R.; Parham, T. G.; Merrill, R. P.; Sienko, M. J. An EXAFS study of the thermal decomposition of molybdenum trisulfide. Inorg. Chem. 1983, 22, 4144–4146.

    Article  CAS  Google Scholar 

  176. Paracchino, A.; Mathews, N.; Hisatomi, T.; Stefik, M.; Tilley, S. D.; Grätzel, M. Ultrathin films on copper(I) oxidewater splitting photocathodes: A study on performance and stability. Energy Environ. Sci. 2012, 5, 8673–8681.

    Article  CAS  Google Scholar 

  177. Wang, B.; Biesold, G. M.; Zhang, M.; Lin, Z. Q. Amorphous inorganic semiconductors for the development of solar cell, photoelectrocatalytic and photocatalytic applications. Chem. Soc. Rev. 2021, 50, 6914–6949.

    Article  CAS  Google Scholar 

  178. Morales-Guio, C. G.; Tilley, S. D.; Vrubel, H.; Grätzel, M.; Hu, X. L. Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst. Nat. Commun. 2014, 5, 3059.

    Article  Google Scholar 

  179. Paracchino, A.; Laporte, V.; Sivula, K.; Grätzel, M.; Thimsen, E. Highly active oxide photocathode for photoelectrochemical water reduction. Nat. Mater. 2011, 10, 456–461.

    Article  CAS  Google Scholar 

  180. Tilley, S. D.; Schreier, M.; Azevedo, J.; Stefik, M.; Graetzel, M. Ruthenium oxide hydrogen evolution catalysis on composite cuprous oxide water-splitting photocathodes. Adv. Funct. Mater. 2014, 24, 303–311.

    Article  CAS  Google Scholar 

  181. Zang, G. L.; Sheng, G. P.; Shi, C.; Wang, Y. K.; Li, W. W.; Yu, H. Q. A bio-photoelectrochemical cell with a MoS3-modified silicon nanowire photocathode for hydrogen and electricity production. Energy Environ. Sci. 2014, 7, 3033–3039.

    Article  CAS  Google Scholar 

  182. Koohi-Fayegh, S.; Rosen, M. A. A review of energy storage types, applications and recent developments. J. Energy Storage 2020, 27, 101047.

    Article  Google Scholar 

  183. Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

    Article  CAS  Google Scholar 

  184. Bonnick, P.; Muldoon, J. A trip to Oz and a peak behind the curtain of magnesium batteries. Adv. Funct. Mater. 2020, 30, 1910510.

    Article  CAS  Google Scholar 

  185. Nayak, P. K.; Yang, L. T.; Brehm, W.; Adelhelm, P. From lithiumion to sodium-ion batteries: Advantages, challenges, and surprises. Angew. Chem., Int. Ed. 2018, 57, 102–120.

    Article  CAS  Google Scholar 

  186. Zhou, D.; Shanmukaraj, D.; Tkacheva, A.; Armand, M.; Wang, G. X. Polymer electrolytes for lithium-based batteries: Advances and prospects. Chem 2019, 5, 2326–2352.

    Article  CAS  Google Scholar 

  187. Yu, J.; Xiao, J. W.; Li, A. R.; Yang, Z.; Zeng, L.; Zhang, Q. F.; Zhu, Y. J.; Guo, L. Enhanced multiple anchoring and catalytic conversion of polysulfides by amorphous MoS3 nanoboxes for high-performance Li-S batteries. Angew. Chem., Int. Ed. 2020, 59, 13071–13078.

    Article  CAS  Google Scholar 

  188. Sun, Y. M.; Liu, N. A.; Cui, Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy 2016, 1, 16071.

    Article  CAS  Google Scholar 

  189. Kim, J. G.; Son, B.; Mukherjee, S.; Schuppert, N.; Bates, A.; Kwon, O.; Choi, M. J.; Chung, H. Y.; Park, S. A review of lithium and non-lithium based solid state batteries. J. Power Sources 2015, 282, 299–322.

    Article  CAS  Google Scholar 

  190. Li, Q.; Chen, J. E.; Fan, L.; Kong, X. Q.; Lu, Y. Y. Progress in electrolytes for rechargeable Li-based batteries and beyond. Green Energy Environ. 2016, 1, 18–42.

    Article  Google Scholar 

  191. Mukhopadhyay, A.; Sheldon, B. W. Deformation and stress in electrode materials for Li-ion batteries. Prog. Mater. Sci. 2014, 63, 58–116.

    Article  CAS  Google Scholar 

  192. Sun, C.; Liu, M. M.; Wang, L. L.; Xie, L. B.; Zhao, W. W.; Li, J. M.; Liu, S. J.; Yan, D. F.; Zhao, Q. Revisiting lithium-storage mechanisms of molybdenum disulfide. Chin. Chem. Lett. 2022, 33, 1779–1797.

    Article  CAS  Google Scholar 

  193. Truong, Q. D.; Yin, L. C.; Hung, N. T.; Nguyen, D. N.; Gambe, Y.; Nayuki, K.; Sasaki, Y.; Kobayashi, H.; Saito, R.; Tran, P. D. et al. Anionic redox in a-(Mo3S11)n polymer cathode for all-solid-state Li-ion battery. Electrochim. Acta 2020, 332, 135218.

    Article  CAS  Google Scholar 

  194. Zhang, Q.; Ding, Z. G.; Liu, G. Z.; Wan, H. L.; Mwizerwa, J. P.; Wu, J. H.; Yao, X. Y. Molybdenum trisulfide based anionic redox driven chemistry enabling high-performance all-solid-state lithium metal batteries. Energy Storage Mater. 2019, 23, 168–180.

    Article  Google Scholar 

  195. Wang, T. Y.; Su, D. W.; Shanmukaraj, D.; Rojo, T.; Armand, M.; Wang, G. X. Electrode materials for sodium-ion batteries: Considerations on crystal structures and sodium storage mechanisms. Electrochem. Energy Rev. 2018, 1, 200–237.

    Article  CAS  Google Scholar 

  196. Zhang, Z. J.; Wang, Y. X.; Chou, S. L.; Li, H. J.; Liu, H. K.; Wang, J. Z. Rapid synthesis of α-Fe2O3/rGO nanocomposites by microwave autoclave as superior anodes for sodium-ion batteries. J. Power Sources 2015, 280, 107–113.

    Article  CAS  Google Scholar 

  197. Ye, H. L.; Wang, L.; Deng, S.; Zeng, X. Q.; Nie, K. Q.; Duchesne, P. N.; Wang, B.; Liu, S. M.; Zhou, J. H.; Zhao, F. P. et al. Amorphous MoS3 infiltrated with carbon nanotubes as an advanced anode material of sodium-ion batteries with large gravimetric, areal, and volumetric capacities. Adv. Energy Mater. 2017, 7, 1601602.

    Article  Google Scholar 

  198. Hong, S. Y.; Kim, Y.; Park, Y.; Choi, A.; Choi, N. S.; Lee, K. T. Charge carriers in rechargeable batteries: Na ions vs. Li ions. Energy Environ. Sci. 2013, 6, 2067–2081.

    Article  CAS  Google Scholar 

  199. Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682.

    Article  CAS  Google Scholar 

  200. Zhao, F. P.; Han, N.; Huang, W. J.; Li, J. J.; Ye, H. L.; Chen, F. J.; Li, Y. G. Nanostructured CuP2/C composites as high-performance anode materials for sodium ion batteries. J. Mater. Chem. A 2015, 3, 21754–21759.

    Article  CAS  Google Scholar 

  201. Qu, B. H.; Ma, C. Z.; Ji, G.; Xu, C. H.; Xu, J.; Meng, Y. S.; Wang, T. H.; Lee, J. Y. Layered SnS2-reduced graphene oxide composite—A high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv. Mater. 2014, 26, 3854–3859.

    Article  CAS  Google Scholar 

  202. Xin, S.; Yin, Y. X.; Guo, Y. G.; Wan, L. J. A high-energy room-temperature sodium-sulfur battery. Adv. Mater. 2014, 26, 1261–1265.

    Article  CAS  Google Scholar 

  203. Fan, L.; Ma, R. F.; Yang, Y. H.; Chen, S. H.; Lu, B. A. Covalent sulfur for advanced room temperature sodium-sulfur batteries. Nano Energy 2016, 28, 304–310.

    Article  CAS  Google Scholar 

  204. Manthiram, A.; Yu, X. W. Ambient temperature sodium-sulfur batteries. Small 2015, 11, 2108–2114.

    Article  CAS  Google Scholar 

  205. Wei, S. Y.; Xu, S. M.; Agrawral, A.; Choudhury, S.; Lu, Y. Y.; Tu, Z. Y.; Ma, L.; Archer, L. A. A stable room-temperature sodium-sulfur battery. Nat. Commun. 2016, 7, 11722.

    Article  CAS  Google Scholar 

  206. Ren, X. D.; Zhao, Q.; McCulloch, W. D.; Wu, Y. Y. MoS2 as a long-life host material for potassium ion intercalation. Nano Res. 2017, 10, 1313–1321.

    Article  CAS  Google Scholar 

  207. Pramudita, J. C.; Sehrawat, D.; Goonetilleke, D.; Sharma, N. An initial review of the status of electrode materials for potassium-ion batteries. Adv. Energy Mater. 2017, 1602911.

  208. Jia, B. R.; Yu, Q. Y.; Zhao, Y. Z.; Qin, M. L.; Wang, W.; Liu, Z. W.; Lao, C. Y.; Liu, Y.; Wu, H. W.; Zhang, Z. L. et al. Bamboolike hollow tubes with MoS2/N-doped-C interfaces boost potassium-ion storage. Adv. Funct. Mater. 2018, 28, 1803409.

    Article  Google Scholar 

  209. Ding, S. S.; Zhou, B. X.; Chen, C. M.; Huang, Z.; Li, P. C.; Wang, S. Y.; Cao, G. Z.; Zhang, M. Sulfur-rich (NH4)2Mo3S13 as a highly reversible anode for sodium/potassium-ion batteries. ACS Nano 2020, 14, 9626–9636.

    Article  CAS  Google Scholar 

  210. Mohtadi, R.; Matsui, M.; Arthur, T. S.; Hwang, S. J. Magnesium borohydride: From hydrogen storage to magnesium battery. Angrw. Chem., Int. Ed. 2012, 51, 9780–9783.

    Article  CAS  Google Scholar 

  211. Meng, Z.; Foix, D.; Brun, N.; Dedryvère, R.; Stievano, L.; Morcrette, M.; Berthelot, R. Alloys to replace Mg anodes in efficient and practical Mg-ion/sulfur batteries. ACS Energy Lett. 2019, 4, 2040–2044.

    Article  CAS  Google Scholar 

  212. Huie, M. M.; Bock, D. C.; Takeuchi, E. S.; Marschilok, A. C.; Takeuchi, K. J. Cathode materials for magnesium and magnesiumion based batteries. Coord. Chem. Rev. 2015, 287, 15–27.

    Article  CAS  Google Scholar 

  213. Yoo, H. D.; Liang, Y. L.; Dong, H.; Lin, J. H.; Wang, H.; Liu, Y. S.; Ma, L.; Wu, T. P.; Li, Y. F.; Ru, Q. et al. Fast kinetics of magnesium monochloride cations in interlayer-expanded titanium disulfide for magnesium rechargeable batteries. Nat. Commun. 2017, 8, 339.

    Article  Google Scholar 

  214. Wu, N.; Yang, Z. Z.; Yao, H. R.; Yin, Y. X.; Gu, L.; Guo, Y. G. Improving the electrochemical performance of the Li4Ti5O12 electrode in a rechargeable magnesium battery by lithium-magnesium co-intercalation. Angew. Chem., Int. Ed. 2015, 54, 5757–5761.

    Article  CAS  Google Scholar 

  215. Cho, J. H.; Aykol, M.; Kim, S.; Ha, J. H.; Wolverton, C.; Chung, K. Y.; Kim, K. B.; Cho, B. W. Controlling the intercalation chemistry to design high-performance dual-salt hybrid rechargeable batteries. J. Am. Chem. Soc. 2014, 136, 16116–16119.

    Article  CAS  Google Scholar 

  216. Yagi, S.; Ichitsubo, T.; Shirai, Y.; Yanai, S.; Doi, T.; Murase, K.; Matsubara, E. A concept of dual-salt polyvalent-metal storage battery. J. Mater. Chem. A 2014, 2, 1144–1149.

    Article  CAS  Google Scholar 

  217. Ru, J.; Wang, X. M.; Wang, F. B.; Cui, X. L.; Du, X. Z.; Lu, X. Q. UiO series of metal-organic frameworks composites as advanced sorbents for the removal of heavy metal ions: Synthesis, applications and adsorption mechanism. Ecotoxicol. Environ. Saf. 2021, 208, 111577.

    Article  CAS  Google Scholar 

  218. Xu, J.; Cao, Z.; Zhang, Y. L.; Yuan, Z. L.; Lou, Z. M.; Xu, X. H.; Wang, X. K. A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: Preparation, application, and mechanism. Chemosphere 2018, 195, 351–364.

    Article  CAS  Google Scholar 

  219. Burakov, A. E.; Galunin, E. V.; Burakova, I. V.; Kucherova, A. E.; Agarwal, S.; Tkachev, A. G.; Gupta, V. K. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicol. Environ. Saf. 2018, 148, 702–712.

    Article  CAS  Google Scholar 

  220. Naushad, M.; Ahamad, T.; Alothman, Z. A.; Al-Muhtaseb, A. H. Green and eco-friendly nanocomposite for the removal of toxic Hg(II) metal ion from aqueous environment: Adsorption kinetics & isotherm modelling. J. Mol. Liq. 2019, 279, 1–8.

    Article  CAS  Google Scholar 

  221. Cui, L. M.; Wang, Y. G.; Gao, L.; Hu, L. H.; Yan, L. G.; Wei, Q.; Du, B. Edta functionalized magnetic graphene oxide for removal of Pb(II), Hg(II) and Cu(II) in water treatment: Adsorption mechanism and separation property. Chem. Eng. J. 2015, 281, 1–10.

    Article  CAS  Google Scholar 

  222. Chandra, V.; Kim, K. S. Highly selective adsorption of Hg2+ by a polypyrrole-reduced graphene oxide composite. Chem. Commun. 2011, 47, 3942–3944.

    Article  CAS  Google Scholar 

  223. Griffiths, C.; Klemick, H.; Massey, M.; Moore, C.; Newbold, S.; Simpson, D.; Walsh, P.; Wheeler, W. U. S. environmental protection agency valuation of surface water quality improvements. Rev. Environ. Econ. Policy 2012, 6, 130–146.

    Article  Google Scholar 

  224. Lin, R. B.; Xiang, S. C.; Xing, H. B.; Zhou, W.; Chen, B. L. Exploration of porous metal-organic frameworks for gas separation and purification. Coord. Chem. Rev. 2019, 378, 87–103.

    Article  CAS  Google Scholar 

  225. Li, H.; Wang, K. C.; Sun, Y. J.; Lollar, C. T.; Li, J. L.; Zhou, H. C. Recent advances in gas storage and separation using metal-organic frameworks. Mater. Today 2018, 21, 108–121.

    Article  CAS  Google Scholar 

  226. Wang, X. R.; Chi, C. L.; Zhang, K.; Qian, Y. H.; Gupta, K. M.; Kang, Z. X.; Jiang, J. W.; Zhao, D. Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation. Nat. Commun. 2017, 8, 14460.

    Article  CAS  Google Scholar 

  227. Lin, R. B.; Xiang, S. C.; Zhou, W.; Chen, B. L. Microporous metal-organic framework materials for gas separation. Chem 2020, 6, 337–363.

    Article  CAS  Google Scholar 

  228. Hüsing, N.; Schubert, U. Aerogels—Airy materials: Chemistry, structure, and properties. Angew. Chem., Int. Ed. 1998, 37, 22–45.

    Article  Google Scholar 

  229. Bi, H. C.; Yin, Z. Y.; Cao, X. H.; Xie, X.; Tan, C. L.; Huang, X.; Chen, B.; Chen, F. T.; Yang, Q. L.; Bu, X. Y. et al. Carbon fiber aerogel made from raw cotton: A novel, efficient and recyclable sorbent for oils and organic solvents. Adv. Mater. 2013, 25, 5916–5921.

    Article  CAS  Google Scholar 

  230. Riley, B. J.; Chun, J.; Ryan, J. V.; Matyás, J.; Li, X. S.; Matson, D. W.; Sundaram, S. K.; Strachan, D. M.; Vienna, J. D. Chalcogen-based aerogels as a multifunctional platform for remediation of radioactive iodine. RSC Adv. 2011, 1, 1704–1715.

    Article  CAS  Google Scholar 

  231. Riley, B. J.; Chun, J.; Um, W.; Lepry, W. C.; Matyas, J.; Olszta, M. J.; Li, X. H.; Polychronopoulou, K.; Kanatzidis, M. G. Chalcogen-based aerogels as sorbents for radionuclide remediation. Environ. Sci. Technol. 2013, 47, 7540–7547.

    Article  CAS  Google Scholar 

  232. Bayer, B. C.; Kaindl, R.; Monazam, M. R. A.; Susi, T.; Kotakoski, J.; Gupta, T.; Eder, D.; Waldhauser, W.; Meyer, J. C. Atomic-scale in situ observations of crystallization and restructuring processes in two-dimensional MoS2 films. ACS Nano 2018, 12, 8758–8769.

    Article  CAS  Google Scholar 

  233. Zhang, J. X.; Feng, P. Y.; Bu, X. H.; Wu, T. Atomically precise metal chalcogenide supertetrahedral clusters: Frameworks to molecules, and structure to function. Natl. Sci. Rev. 2022, 9, nwab076.

    Article  CAS  Google Scholar 

  234. Gao, C. C.; Min, X.; Fang, M. H.; Tao, T. Y.; Zheng, X. H.; Liu, Y. G.; Wu, X. W.; Huang, Z. H. Innovative materials science via machine learning. Adv. Funct. Mater. 2021, 32, 2108044.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Funds for Distinguished Young Scientists (No. 61825503), the National Natural Science Foundation of China (Nos. 51902101, 61775101, and 61804082), the Youth Natural Science Foundation of Hunan Province (No. 2021JJ40044), Natural Science Foundation of Jiangsu Province (No. BK20201381), and Science Foundation of Nanjing University of Posts and Telecommunications (No. NY219144).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Longlu Wang, Xia Liu or Qiang Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, C., Wang, L., Xie, L. et al. Amorphous molybdenum sulfide and its Mo-S motifs: Structural characteristics, synthetic strategies, and comprehensive applications. Nano Res. 15, 8613–8635 (2022). https://doi.org/10.1007/s12274-022-4507-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4507-z

Keywords

Navigation