Skip to main content
Log in

In-situ growth of polypyrrole on aramid nanofibers for electromagnetic interference shielding films with high stability

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Flexible electromagnetic interference (EMI) shielding films with high stability have shown promising prospect in harsh working conditions such as military, communication, and special protection fields. Herein, flexible aramid nanofibers@polypyrrole (ANF@PPy) films with high stability were easily achieved by the in-situ growth of PPy on the surface of ANF and the subsequent pressured-filtration film-forming process. When the amount of pyrrole (Py) monomer is 40 µL, the ANF@PPy (AP40) film exhibited excellent EMI shielding performance with shielding effectiveness (SE) of 41.69 dB, tensile strength of 96.01 MPa, and fracture strain of 21.95% at the thickness of 75.76 µm. Particularly, the anticipated EMI shielding performance can be maintained even after being heated at 200 °C in air, soaked in 3.5% NaCl solution, repeated folding for one million times, or burned directly, indicating superior environmental durability in harsh conditions. Therefore, it is believed that the ANF@PPy films with high stability offer a facile solution for practical protection for high-performance EMI shielding applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Cheng, Y.; Li, X. Y.; Qin, Y. X.; Fang, Y. T.; Liu, G. L.; Wang, Z. Y.; Matz, J.; Dong, P.; Shen, J. F.; Ye, M. X. Hierarchically porous polyimide/Ti3C2Tx film with stable electromagnetic interference shielding after resisting harsh conditions. Sci. Adv. 2021, 7, eabj1663.

    Article  CAS  Google Scholar 

  2. Zhang, Y. L.; Ruan, K. P.; Gu, J. W. Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small 2021, 17, 2101951.

    Article  CAS  Google Scholar 

  3. Liang, L. Y.; Yao, C.; Yan, X.; Feng, Y. Z.; Hao, X.; Zhou, B.; Wang, Y. M.; Ma, J. M.; Liu, C. T.; Shen, C. Y. High-efficiency electromagnetic interference shielding capability of magnetic Ti3C2Tx MXene/CNT composite film. J. Mater. Chem. A 2021, 9, 24560–24570.

    Article  CAS  Google Scholar 

  4. Song, P.; Liu, B.; Liang, C. B.; Ruan, K. P.; Qiu, H.; Ma, Z. L.; Guo, Y. Q.; Gu, J. W. Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 2021, 13, 91.

    Article  CAS  Google Scholar 

  5. Pavlou, C.; Pastore Carbone, M. G.; Manikas, A. C.; Trakakis, G.; Koral, C.; Papari, G.; Andreone, A.; Galiotis, C. Effective EMI shielding behaviour of thin graphene/PMMA nanolaminates in the THz range. Nat. Commun. 2021, 12, 4655.

    Article  CAS  Google Scholar 

  6. Zeng, Z. H.; Wang, C. X.; Siqueira, G.; Han, D. X.; Huch, A.; Abdolhosseinzadeh, S.; Heier, J.; Nüesch, F.; Zhang, C. F.; Nyström, G. Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance. Adv. Sci. 2020, 7, 2000979.

    Article  CAS  Google Scholar 

  7. Liu, Q. Z.; He, X. W.; Yi, C.; Sun, D. M.; Chen, J. H.; Wang, D.; Liu, K.; Li, M. F. Fabrication of ultra-light nickel/graphene composite foam with 3D interpenetrating network for high-performance electromagnetic interference shielding. Compos. Part B:Eng. 2020, 182, 107614.

    Article  CAS  Google Scholar 

  8. Yang, X. T.; Fan, S. G.; Li, Y.; Guo, Y. Q.; Li, Y. G.; Ruan, K. P.; Zhang, S. M.; Zhang, J. L.; Kong, J.; Gu, J. W. Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework. Compos. Part A:Appl. Sci. Manuf. 2020, 128, 105670.

    Article  CAS  Google Scholar 

  9. Sun, F. Y.; Xu, J. H.; Liu, T.; Li, F. F.; Poo, Y.; Zhang, Y. N.; Xiong, R. H.; Huang, C. B.; Fu, J. J. An autonomously ultrafast self-healing, highly colourless, tear-resistant and compliant elastomer tailored for transparent electromagnetic interference shielding films integrated in flexible and optical electronics. Mater. Horiz. 2021, 8, 3356–3367.

    Article  CAS  Google Scholar 

  10. Song, P.; Ma, Z. L.; Qiu, H.; Ru, Y. F.; Gu, J. W. High-efficiency electromagnetic interference shielding of rGO@FeNi/epoxy composites with regular honeycomb structures. Nano-Micro Lett. 2022, 14, 51.

    Article  CAS  Google Scholar 

  11. Guo, H. T.; Li, Y.; Ji, Y.; Chen, Y. M.; Liu, K. M.; Shen, B.; He, S. J.; Duan, G. G.; Han, J. Q.; Jiang, S. H. Highly flexible carbon nanotubes/aramid nanofibers composite papers with ordered and layered structures for efficient electromagnetic interference shielding. Compos. Commun. 2021, 27, 100879.

    Article  Google Scholar 

  12. Ruan, K. P.; Guo, Y. Q.; Lu, C. Y.; Shi, X. T.; Ma, T. B.; Zhang, Y. L.; Kong, J.; Gu, J. W. Significant reduction of interfacial thermal resistance and phonon scattering in graphene/polyimide thermally conductive composite films for thermal management. Research 2021, 2021, 8438614.

    Article  CAS  Google Scholar 

  13. Shi, Y. Y.; Xiang, Z.; Cai, L.; Pan, F.; Dong, Y. Y.; Zhu, X. J.; Cheng, J.; Jiang, H. J.; Lu, W. Multi-interface assembled N-doped MXene/HCFG/AgNW films for wearable electromagnetic shielding devices with multimodal energy conversion and healthcare monitoring performances. ACS Nano 2022, 16, 7816–7833.

    Article  CAS  Google Scholar 

  14. Li, Y. L.; Zhang, D.; Zhou, B.; He, C. E.; Wang, B.; Feng, Y. Z.; Liu, C. T. Synergistically enhancing electromagnetic interference shielding performance and thermal conductivity of polyvinylidene fluoride-based lamellar film with MXene and graphene. Compos. Part A:Appl. Sci. Manuf. 2022, 157, 106945.

    Article  CAS  Google Scholar 

  15. Gong, S.; Sheng, X. X.; Li, X. L.; Sheng, M. J.; Wu, H.; Lu, X.; Qu, J. P. A multifunctional flexible composite film with excellent multisource driven thermal management, electromagnetic interference shielding, and fire safety performance, inspired by a “brick-mortar” sandwich structure. Adv. Funct. Mater., in press, https://doi.org/10.1002/adfm.202200570.

  16. Wang, L.; Ma, Z. L.; Zhang, Y. L.; Qiu, H.; Ruan, K. P.; Gu, J. W. Mechanically strong and folding-endurance Ti3C2Tx MXene/PBO nanofiber films for efficient electromagnetic interference shielding and thermal management. Carbon Energy 2022, 4, 200–210.

    Article  CAS  Google Scholar 

  17. Vu, M. C.; Park, P. J.; Bae, S. R.; Kim, S. Y.; Kang, Y. M.; Choi, W. K.; Islam, M. A.; Won, J. C.; Park, M.; Kim, S. R. Scalable ultrarobust thermoconductive nonflammable bioinspired papers of graphene nanoplatelet crosslinked aramid nanofibers for thermal management and electromagnetic shielding. J. Mater. Chem. A 2021, 9, 8527–8540.

    Article  CAS  Google Scholar 

  18. Wang, Y. T.; Peng, H. K.; Li, T. T.; Shiu, B. C.; Zhang, X. F.; Lou, C. W.; Lin, J. H. Lightweight, flexible and superhydrophobic conductive composite films based on layer-by-layer self-assembly for high-performance electromagnetic interference shielding. Compos. Part A:Appl. Sci. Manuf. 2021, 141, 106199.

    Article  CAS  Google Scholar 

  19. Gu, J. H.; Hu, S. W.; Ji, H. J.; Feng, H. H.; Zhao, W. W.; Wei, J.; Li, M. Y. Multi-layer silver nanowire/polyethylene terephthalate mesh structure for highly efficient transparent electromagnetic interference shielding. Nanotechnology 2020, 31, 185303.

    Article  CAS  Google Scholar 

  20. Du, Y. Q.; Xu, J.; Fang, J. Y.; Zhang, Y. T.; Liu, X. Y.; Zuo, P. Y.; Zhuang, Q. X. Ultralight, highly compressible, thermally stable MXene/aramid nanofiber anisotropic aerogels for electromagnetic interference shielding. J. Mater. Chem. A 2022, 10, 6690–6700.

    Article  CAS  Google Scholar 

  21. Xie, Z. X.; Cai, Y. F.; Zhan, Y. H.; Meng, Y. Y.; Li, Y. C.; Xie, Q.; Xia, H. S. Thermal insulating rubber foams embedded with segregated carbon nanotube networks for electromagnetic shielding applications. Chem. Eng. J. 2022, 435, 135118.

    Article  CAS  Google Scholar 

  22. Wang, J.; Li, Q.; Li, K. C.; Sun, X.; Wang, Y. Z.; Zhuang, T. T.; Yan, J. J.; Wang, H. Ultra-high electrical conductivity in filler-free polymeric hydrogels toward thermoelectrics and electromagnetic interference shielding. Adv. Mater. 2022, 34, 2109904.

    Article  CAS  Google Scholar 

  23. Ma, T. B.; Ma, H.; Ruan, K. P.; Shi, X. T.; Qiu, H.; Gao, S. Y.; Gu, J. W. Thermally conductive poly(lactic acid) composites with superior electromagnetic shielding performances via 3D printing technology. Chin. J. Polym. Sci. 2022, 40, 248–255.

    Article  CAS  Google Scholar 

  24. Zeng, Z. H.; Qiao, J.; Zhang, R. N.; Liu, J. R.; Nyström, G. Nanocellulose-assisted preparation of electromagnetic interference shielding materials with diversified microstructure. SmartMat, in press, https://doi.org/10.1002/smm2.1118.

  25. Xu, L. Z.; Zhao, X. L.; Xu, C. L.; Kotov, N. A. Water-rich biomimetic composites with abiotic self-organizing nanofiber network. Adv. Mater. 2018, 30, 1703343.

    Article  Google Scholar 

  26. Yang, B.; Wang, L.; Zhang, M. Y.; Luo, J. J.; Ding, X. Y. Timesaving, High-efficiency approaches to fabricate aramid nanofibers. ACS Nano 2019, 13, 7886–7897.

    Article  CAS  Google Scholar 

  27. Yang, B.; Wang, L.; Zhang, M. Y.; Luo, J. J.; Lu, Z. Q.; Ding, X. Y. Fabrication, applications, and prospects of aramid nanofiber. Adv. Funct. Mater. 2020, 30, 2000186.

    Article  CAS  Google Scholar 

  28. Hu, P. Y.; Lyu, J.; Fu, C.; Gong, W. B.; Liao, J. H.; Lu, W. B.; Chen, Y. P.; Zhang, X. T. Multifunctional aramid nanofiber/carbon nanotube hybrid aerogel films. ACS Nano 2020, 14, 688–697.

    Article  CAS  Google Scholar 

  29. Wu, K.; Wang, J. M.; Liu, D. Y.; Lei, C. X.; Liu, D.; Lei, W. W.; Fu, Q. Highly thermoconductive, thermostable, and super-flexible film by engineering 1D rigid rod-like aramid nanofiber/2D boron nitride nanosheets. Adv. Mater. 2020, 32, 1906939.

    Article  CAS  Google Scholar 

  30. Weng, C. X.; Xing, T. L.; Jin, H.; Wang, G. R.; Dai, Z. H.; Pei, Y. M.; Liu, L. Q.; Zhang, Z. Mechanically robust ANF/MXene composite films with tunable electromagnetic interference shielding performance. Compos. Part A:Appl. Sci. Manuf. 2020, 135, 105927.

    Article  CAS  Google Scholar 

  31. Hosseini, E.; Arjmand, M.; Sundararaj, U.; Karan, K. Filler-free conducting polymers as a new class of transparent electromagnetic interference shields. ACS Appl. Mater. Interfaces 2020, 12, 28596–28606.

    Article  CAS  Google Scholar 

  32. Huang, F. W.; Yang, Q. C.; Jia, L. C.; Yan, D. X.; Li, Z. M. Aramid nanofiber assisted preparation of self-standing liquid metal-based films for ultrahigh electromagnetic interference shielding. Chem. Eng. J. 2021, 426, 131288.

    Article  CAS  Google Scholar 

  33. Zhou, B.; Han, G. J.; Zhang, Z.; Li, Z. Y.; Feng, Y. Z.; Ma, J. M.; Liu, C. T.; Shen, C. Y. Aramid nanofiber-derived carbon aerogel film with skin-core structure for high electromagnetic interference shielding and solar-thermal conversion. Carbon 2021, 184, 562–570.

    Article  CAS  Google Scholar 

  34. Liu, R.; He, X.; Miao, M.; Cao, S. M.; Feng, X. In-situ growth of porous Cu3(BTC)2 on cellulose nanofibrils for ultra-low dielectric films with high flexibility. J. Mater. Sci. Technol. 2022, 112, 202–211.

    Article  Google Scholar 

  35. Zhang, Y. L.; Ma, Z. L.; Ruan, K. P.; Gu, J. E. Flexible Ti3C2Tx/(aramid nanofiber/PVA) composite films for superior electromagnetic interference shielding. Research 2022, 2022, 9780290.

    CAS  Google Scholar 

  36. Han, Y. X.; Ruan, K. P.; Gu, J. W. Janus (BNNS/ANF)−(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances. Nano Res. 2022, 15, 4747–4755.

    Article  CAS  Google Scholar 

  37. Zhao, H.; Hou, L.; Lu, Y. X. Electromagnetic shielding effectiveness and serviceability of the multilayer structured cuprammonium fabric/polypyrrole/copper (CF/PPy/Cu) composite. Chem. Eng. J. 2016, 297, 170–179.

    Article  CAS  Google Scholar 

  38. Yin, J.; Zhang, J. X.; Zhang, S. D.; Liu, C.; Yu, X. L.; Chen, L. Q.; Song, Y. P.; Han, S.; Xi, M.; Zhang, C. L. et al. Flexible 3D porous graphene film decorated with nickel nanoparticles for absorptiondominated electromagnetic interference shielding. Chem. Eng. J. 2021, 421, 129763.

    Article  CAS  Google Scholar 

  39. Ma, Z. L.; Xiang, X. L.; Shao, L.; Zhang, Y. L.; Gu, J. W. Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem., Int. Ed. 2022, 61, e202200705.

    CAS  Google Scholar 

  40. Lei, C. X.; Zhang, Y. Z.; Liu, D. Y.; Wu, K.; Fu, Q. Metal-level robust, folding endurance, and highly temperature-stable MXene-based film with engineered aramid nanofiber for extreme-condition electromagnetic interference shielding applications. ACS Appl. Mater. Interfaces 2020, 12, 26485–26495.

    Article  CAS  Google Scholar 

  41. Zhou, B.; Li, Y. L.; Li, Z. Y.; Ma, J. M.; Zhou, K. Q.; Liu, C. T.; Shen, C. Y.; Feng, Y. Z. Fire/heat-resistant, anti-corrosion and folding Ti2C3Tx MXene/single-walled carbon nanotube films for extreme-environmental EMI shielding and solar-thermal conversion applications. J. Mater. Chem. C 2021, 9, 10425–10434.

    Article  CAS  Google Scholar 

  42. Qian, K. P.; Li, S.; Fang, J. H.; Yang, Y. H.; Cao, S. M.; Miao, M.; Feng, X. C60 intercalating Ti3C2Tx MXenes assisted by γ-cyclodextrin for electromagnetic interference shielding films with high stability. J. Mater. Sci. Technol. 2022, 127, 71–77.

    Article  Google Scholar 

  43. Qian, K. P.; Wu, H. M.; Fang, J. H.; Yang, Y. H.; Miao, M.; Cao, S. M.; Shi, L. Y.; Feng, X. Yarn-ball-shaped CNF/MWCNT microspheres intercalating Ti3C2Tx MXene for electromagnetic interference shielding films. Carbohydr. Polym. 2021, 254, 117325.

    Article  CAS  Google Scholar 

  44. Zeng, Z. H.; Wu, N.; Wei, J. J.; Yang, Y. F.; Wu, T. T.; Li, B.; Hauser, S. B.; Yang, W. D.; Liu, J. R.; Zhao, S. Y. Porous and ultraflexible crosslinked MXene/polyimide composites for multifunctional electromagnetic interference shielding. Nano-Micro Lett. 2022, 14, 59.

    Article  CAS  Google Scholar 

  45. Wei, J. J.; Zhu, C. L.; Zeng, Z. H.; Pan, F.; Wan, F. Q.; Lei, L. W.; Nyström, G.; Fu, Z. Y. Bioinspired cellulose-integrated MXene-based hydrogels for multifunctional sensing and electromagnetic interference shielding. Interdiscip. Mater., in press, https://doi.org/10.1002/idm2.12026.

  46. Zhang, Y. L.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. Multifunctional Ti3C2Tx−(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Res. 2022, 15, 5601–5609.

    Article  CAS  Google Scholar 

  47. Liang, C. B.; Gu, Z. J.; Zhang, Y. L.; Ma, Z. L.; Qiu, H.; Gu, J. W. Structural design strategies of polymer matrix composites for electromagnetic interference shielding: A review. Nano-Micro Lett. 2021, 13, 181.

    Article  CAS  Google Scholar 

  48. Liu, R. T.; Miao, M.; Li, Y. H.; Zhang, J. F.; Cao, S. M.; Feng, X. Ultrathin biomimetic polymeric Ti3C2Tx MXene composite films for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2018, 10, 44787–44795.

    Article  CAS  Google Scholar 

  49. Wang, L.; Ma, Z. L.; Zhang, Y. L.; Chen, L. X.; Cao, D. P.; Gu, J. W. Polymer-based EMI shielding composites with 3D conductive networks: A mini-review. SusMat 2021, 1, 413–431.

    Article  Google Scholar 

  50. Zou, L. H.; Lan, C. T.; Zhang, S. L.; Zheng, X. H.; Xu, Z. Z.; Li, C. L.; Yang, L.; Ruan, F. T.; Tan, S. C. Near-instantaneously self-healing coating toward stable and durable electromagnetic interference shielding. Nano-Micro Lett. 2021, 13, 190.

    Article  CAS  Google Scholar 

  51. Xu, G. P.; Wang, B.; Song, S. S.; Ren, Z. C.; Li, J. J.; Xu, X. Q.; Zhou, W.; Li, H. B.; Yang, H.; Zhang, L. P. et al. High-performance and robust dual-function electrochromic device for dynamic thermal regulation and electromagnetic interference shielding. Chem. Eng. J. 2021, 422, 130064.

    Article  CAS  Google Scholar 

  52. Ruan, K. P.; Guo, Y. Q.; Gu, J. W. Liquid crystalline polyimide films with high intrinsic thermal conductivities and robust toughness. Macromolecules 2021, 54, 4934–4944.

    Article  CAS  Google Scholar 

  53. Yang, X. T.; Guo, Y. Q.; Luo, X.; Zheng, N.; Ma, T. B.; Tan, J. J.; Li, C. M.; Zhang, Q. Y.; Gu, J. W. Self-healing, recoverable epoxy elastomers and their composites with desirable thermal conductivities by incorporating BN fillers via in-situ polymerization. Compos. Sci. Technol. 2018, 164, 59–64.

    Article  CAS  Google Scholar 

  54. Li, S.; Qian, K. P.; Thaiboonrod, S.; Wu, H. M.; Cao, S. M.; Miao, M.; Shi, L. Y.; Feng, X. Flexible multilayered aramid nanofiber/silver nanowire films with outstanding thermal durability for electromagnetic interference shielding. Compos. Part A:Appl. Sci. Manuf. 2021, 151, 106643.

    Article  CAS  Google Scholar 

  55. Huang, Z. H.; Hu, S. C.; Zhang, N.; Chen, X. L.; Chen, D.; Jin, Q.; Jian, X. Effect of volume ratio of acetonitrile to water on the morphology and property of polypyrrole prepared by chemical oxidation method. Polym. Eng. Sci. 2012, 52, 1600–1605.

    Article  CAS  Google Scholar 

  56. Seid, L.; Lakhdari, D.; Berkani, M.; Belgherbi, O.; Chouder, D.; Vasseghian, Y.; Lakhdari, N. High-efficiency electrochemical degradation of phenol in aqueous solutions using Ni-PPy and Cu-PPy composite materials. J. Hazard. Mater. 2022, 423, 126986.

    Article  CAS  Google Scholar 

  57. Boutry, C. M.; Gerber-Hörler, I.; Hierold, C. Electrically conducting biodegradable polymer composites (polylactide-polypyrrole and polycaprolactone-polypyrrole) for passive resonant circuits. Polym. Eng. Sci. 2013, 53, 1196–1208.

    Article  CAS  Google Scholar 

  58. Gan, W. T.; Chen, C. J.; Giroux, M.; Zhong, G.; Goyal, M. M.; Wang, Y. L.; Ping, W. W.; Song, J. W.; Xu, S. M.; He, S. M. et al. Conductive wood for high-performance structural electromagnetic interference shielding. Chem. Mater. 2020, 32, 5280–5289.

    Article  CAS  Google Scholar 

  59. Wang, L.; Zhang, M. Y.; Yang, B.; Tan, J. J.; Ding, X. Y. Highly compressible, thermally stable, light-weight, and robust aramid nanofibers/Ti3AlC2 MXene composite aerogel for sensitive pressure sensor. ACS Nano 2020, 14, 10633–10647.

    Article  CAS  Google Scholar 

  60. Wang, F.; Li, Q. C.; Park, J. O.; Zheng, S. H.; Choi, E. Ultralow voltage high-performance bioartificial muscles based on ionically crosslinked polypyrrole-coated functional carboxylated bacterial cellulose for soft robots. Adv. Funct. Mater. 2021, 31, 2007749.

    Article  CAS  Google Scholar 

  61. Guan, Y.; Li, W.; Zhang, Y. L.; Shi, Z. Q.; Tan, J.; Wang, F.; Wang, Y. H. Aramid nanofibers and poly (vinyl alcohol) nanocomposites for ideal combination of strength and toughness via hydrogen bonding interactions. Compos. Sci. Technol. 2017, 144, 193–201.

    Article  CAS  Google Scholar 

  62. Ait El Fakir, A.; Anfar, Z.; Amedlous, A.; Zbair, M.; Hafidi, Z.; El Achouri, M.; Jada, A.; El Alem, N. Engineering of new hydrogel beads based conducting polymers: Metal-free catalysis for highly organic pollutants degradation. Appl. Catal. B:Environ. 2021, 286, 119948.

    Article  CAS  Google Scholar 

  63. Lizundia, E.; Nguyen, T. D.; Vilas, J. L.; Hamad, W. Y.; MacLachlan, M. J. Chiroptical, morphological and conducting properties of chiral nematic mesoporous cellulose/polypyrrole composite films. J. Mater. Chem. A 2017, 5, 19184–19194.

    Article  CAS  Google Scholar 

  64. Peng, X. X.; Li, J. W.; Yi, L. C.; Liu, X.; Chen, J. X.; Cai, P. W.; Wen, Z. H. Ultrathin ZnIn2S4 nanosheets decorating PPy nanotubes toward simultaneous photocatalytic H2 production and 1, 4-benzenedimethanol valorization. Appl. Catal. B Environ. 2022, 300, 120737.

    Article  CAS  Google Scholar 

  65. Li, Y. F.; Yu, H. S.; Zhang, Y.; Zhou, N.; Tan, Z. C. Kinetics and characterization of preparing conductive nanofibrous membrane by in-situ polymerization of polypyrrole on electrospun nanofibers. Chem. Eng. J. 2022, 433, 133531.

    Article  CAS  Google Scholar 

  66. Zhang, L. K.; Chen, Y.; Liu, Q.; Deng, W. T.; Yue, Y. Q.; Meng, F. B. Ultrathin flexible electrospun carbon nanofibers reinforced graphene microgasbags films with three-dimensional conductive network toward synergetic enhanced electromagnetic interference shielding. J. Mater. Sci. Technol. 2022, 111, 57–65.

    Article  Google Scholar 

  67. Chen, Y.; Li, J. Z.; Li, T.; Zhang, L. K.; Meng, F. B. Recent advances in graphene-based films for electromagnetic interference shielding: Review and future prospects. Carbon 2021, 180, 163–184.

    Article  CAS  Google Scholar 

  68. Parit, M.; Du, H. S.; Zhang, X. Y.; Prather, C.; Adams, M.; Jiang, Z. H. Polypyrrole and cellulose nanofiber based composite films with improved physical and electrical properties for electromagnetic shielding applications. Carbohydr. Polym. 2020, 240, 116304.

    Article  CAS  Google Scholar 

  69. Du, H. S.; Parit, M.; Liu, K.; Zhang, M. M.; Jiang, Z. H.; Huang, T. S.; Zhang, X. Y.; Si, C. L. Multifunctional cellulose nanopaper with superior water-resistant, conductive, and antibacterial properties functionalized with chitosan and polypyrrole. ACS Appl. Mater. Interfaces 2021, 13, 32115–32125.

    Article  CAS  Google Scholar 

  70. Moudood, A.; Rahman, A.; Huq, N. M. L.; Öchsner, A.; Islam, M. M.; Francucci, G. Mechanical properties of flax fiber-reinforced composites at different relative humidities: Experimental, geometric, and displacement potential function approaches. Polym. Compos. 2020, 41, 4963–4973.

    Article  CAS  Google Scholar 

  71. Du, L. L.; Gao, P.; Meng, Y. D.; Liu, Y. L.; Le, S. W.; Yu, C. B. Highly efficient removal of Cr(VI) from aqueous solutions by polypyrrole/monodisperse latex spheres. ACS Omega 2020, 5, 6651–6660.

    Article  CAS  Google Scholar 

  72. Chen, J. H.; Xu, J. K.; Wang, K.; Qian, X. R.; Sun, R. C. Highly thermostable, flexible, and conductive films prepared from cellulose, graphite, and polypyrrole nanoparticles. ACS Appl. Mater. Interfaces 2015, 7, 15641–15648.

    Article  CAS  Google Scholar 

  73. Wang, S. J.; Meng, W. Y.; Lv, H. F.; Wang, Z. X.; Pu, J. W. Thermal insulating, light-weight and conductive cellulose/aramid nanofibers composite aerogel for pressure sensing. Carbohydr. Polym. 2021, 270, 118414.

    Article  CAS  Google Scholar 

  74. Huang, S.; Wang, L.; Li, Y. C.; Liang, C. B.; Zhang, J. L. Novel Ti3C2Tx MXene/epoxy intumescent fire-retardant coatings for ancient wooden architectures. J. Appl. Polym. Sci. 2021, 138, 50649.

    Article  CAS  Google Scholar 

  75. Pethsangave, D. A.; Khose, R. V.; Wadekar, P. H.; Some, S. Novel approach toward the synthesis of a phosphorus-functionalized polymer-based graphene composite as an efficient flame retardant. ACS Sustainable Chem. Eng. 2019, 7, 11745–11753.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially sponsored by the Science and Technology Commission of Shanghai Municipality (Nos. 20230742300 and 18595800700) and the project of “joint assignment” in Shanghai University led by Prof. Tongyue Gao from School of Mechatronic Engineering and Automation. We are grateful to Instrumental Analysis & Research Center of Shanghai University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Feng.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Thaiboonrod, S., Fang, J. et al. In-situ growth of polypyrrole on aramid nanofibers for electromagnetic interference shielding films with high stability. Nano Res. 15, 8536–8545 (2022). https://doi.org/10.1007/s12274-022-4628-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4628-4

Keywords

Navigation