Skip to main content
Log in

MoC nanocrystals confined in N-doped carbon nanosheets toward highly selective electrocatalytic nitric oxide reduction to ammonia

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Electrochemical nitric oxide reduction reaction (NORR) to produce ammonia (NH3) under ambient conditions is a promising alternative to the energy and carbon-intensive Haber-Bosch approach, but its performance is still improved. Herein, molybdenum carbides (MoC) nanocrystals confined by nitrogen-doped carbon nanosheets are first designed as an efficient and durable electrocatalyst for catalyzing the reduction of NO to NH3 with maximal Faradaic efficiency of 89% ± 2% and a yield rate of 1,350 ± 15 µg·h−1·cm−2 at the applied potential of −0.8 V vs. reversible hydrogen electrode (RHE) as well as high stable activity with negligible current density and NH3 yield rate decays over a 30 h continue the test. Moreover, as a proof-of-concept of Zn−NO battery, it achieves a peak power density of 1.8 mW·cm−2 and a large NH3 yield rate of 782 ± 10 µg·h−1·cm−2, which are comparable to the best-reported results. Theoretical calculations reveal that the MoC(111) has a strong electronic interaction with NO molecules and thus lowering the energy barrier of the potential-determining step and suppressing hydrogen evolution kinetics. This work suggests that Mo-based materials are a powerful platform providing great opportunities to explore highly selective and active catalysts for NH3 production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Service, R. F. New recipe produces ammonia from air, water, and sunlight. Science 2014, 345, 610.

    Article  CAS  Google Scholar 

  2. Zhu, D.; Zhang, L. H.; Ruther, R. E.; Hamers, R. J. Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. Nat. Mater. 2013, 12, 836–841.

    Article  CAS  Google Scholar 

  3. Han, L. L.; Liu, X. J.; Chen, J. P.; Lin, R. Q.; Liu, H. X.; Lü, F.; Bak, S.; Liang, Z. X.; Zhao, S. Z.; Stavitski, E. et al. Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation. Angew. Chem., Int. Ed. 2019, 58, 2321–2325.

    Article  CAS  Google Scholar 

  4. Rosca, V.; Duca, M.; de Groot, M. T.; Koper, M. T. M. Nitrogen cycle electrocatalysis. Chem. Rev. 2009, 109, 2209–2244.

    Article  CAS  Google Scholar 

  5. Qiu, Y.; Peng, X. Y.; Lü, F.; Mi, Y. Y.; Zhuo, L. C.; Ren, J. Q.; Liu, X. J.; Luo, J. Single-atom catalysts for the electrocatalytic reduction of nitrogen to ammonia under ambient conditions. Chem. Asian J. 2019, 14, 2770–2779.

    Article  CAS  Google Scholar 

  6. Han, L. L.; Ren, Z. H.; Ou, P. F.; Cheng, H.; Rui, N.; Lin, L. L.; Liu, X. J.; Zhuo, L. C.; Song, J.; Sun, J. Q. et al. Modulating single-atom palladium sites with copper for enhanced ambient ammonia electrosynthesis. Angew. Chem., Int. Ed. 2021, 60, 345–350.

    Article  CAS  Google Scholar 

  7. Chen, Y.; Guo, R. J.; Peng, X. Y.; Wang, X. Q.; Liu, X. J.; Ren, J. Q.; He, J.; Zhuo, L. C.; Sun, J. Q.; Liu, Y. F. et al. Highly productive electrosynthesis of ammonia by admolecule-targeting single Ag sites. ACS Nano 2020, 14, 6938–6946.

    Article  CAS  Google Scholar 

  8. Zhao, J. X.; Chen, Z. F. Single Mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation: A computational study. J. Am. Chem. Soc. 2017, 139, 12480–12487.

    Article  CAS  Google Scholar 

  9. Lü, F.; Zhao, S. Z.; Guo, R. J.; He, J.; Peng, X. Y.; Bao, H. H.; Fu, J. T.; Han, L. L.; Qi, G. C.; Luo, J. et al. Nitrogen-coordinated single Fe sites for efficient electrocatalytic N2 fixation in neutral media. Nano Energy 2019, 61, 420–427.

    Article  Google Scholar 

  10. Han, L. L.; Hou, M. C.; Ou, P. F.; Cheng, H.; Ren, Z. H.; Liang, Z. X.; Boscoboinik, J. A.; Hunt, A.; Waluyo, I.; Zhang, S. S. et al. Local modulation of single-atomic Mn sites for enhanced ambient ammonia electrosynthesis. ACS Catal. 2021, 11, 509–516.

    Article  CAS  Google Scholar 

  11. Zhao, Y. F.; Zhao, Y. X.; Waterhouse, G. I. N.; Zheng, L. R.; Cao, X. Z.; Teng, F.; Wu, L. Z.; Tung, C. H.; O’Hare, D.; Zhang, T. R. Layered-double-hydroxide nanosheets as efficient visible-light-driven photocatalysts for dinitrogen fixation. Adv. Mater. 2017, 29, 1703828.

    Article  Google Scholar 

  12. Zhang, L.; Ji, X. Q.; Ren, X.; Ma, Y. J.; Shi, X. F.; Tian, Z. Q.; Asiri, A. M.; Chen, L.; Tang, B.; Sun, X. P. Electrochemical ammonia synthesis via nitrogen reduction reaction on a MoS2 catalyst: Theoretical and experimental studies. Adv. Mater. 2018, 30, 1800191.

    Article  Google Scholar 

  13. Zhang, R.; Zhang, Y.; Ren, X.; Cui, G. W.; Asiri, A. M.; Zheng, B. Z.; Sun, X. P. High-efficiency electrosynthesis of ammonia with high selectivity under ambient conditions enabled by VN nanosheet array. ACS Sustainable Chem. Eng. 2018, 6, 9545–9549.

    Article  CAS  Google Scholar 

  14. Tao, H. C.; Choi, C.; Ding, L. X.; Jiang, Z.; Han, Z. S.; Jia, M. W.; Fan, Q.; Gao, Y. N.; Wang, H. H.; Robertson, A. W. et al. Nitrogen fixation by Ru single-atom electrocatalytic reduction. Chem 2019, 5, 204–214.

    Article  CAS  Google Scholar 

  15. Tanaka, H.; Nishibayashi, Y.; Yoshizawa, K. Interplay between theory and experiment for ammonia synthesis catalyzed by transition metal complexes. Acc. Chem. Res. 2016, 49, 987–995.

    Article  CAS  Google Scholar 

  16. Geng, Z. G.; Liu, Y.; Kong, X. D.; Li, P.; Li, K.; Liu, Z. Y.; Du, J. J.; Shu, M.; Si, R.; Zeng, J. Achieving a record-high yield rate of 120.9 µgNH3·mgcat.−1·h−1 for N2 electrochemical reduction over Ru single-atom catalysts. Adv. Mater. 2018, 30, 1803498.

    Article  Google Scholar 

  17. Guo, C. X.; Ran, J. R.; Vasileff, A.; Qiao, S. Z. Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ. Sci. 2018, 11, 45–56.

    Article  CAS  Google Scholar 

  18. Peng, X. Y.; Mi, Y. Y.; Bao, H. H.; Liu, Y. F.; Qi, D. F.; Qiu, Y.; Zhuo, L. C.; Zhao, S. Z.; Sun, J. Q.; Tang, X. L. et al. Ambient electrosynthesis of ammonia with efficient denitration. Nano Energy 2020, 78, 105321.

    Article  CAS  Google Scholar 

  19. Liang, J.; Liu, P. Y.; Li, Q. Y.; Li, T. S.; Yue, L. C.; Luo, Y. S.; Liu, Q.; Li, N.; Tang, B.; Alshehri, A. A. et al. Amorphous boron carbide on titanium dioxide nanobelt arrays for high-efficiency electrocatalytic NO reduction to NH3. Angew. Chem., Int. Ed. 2022, 61, e202202087.

    Article  CAS  Google Scholar 

  20. Zhang, L. C.; Liang, J.; Wang, Y. Y.; Mou, T.; Lin, Y. T.; Yue, L. C.; Li, T. S.; Liu, Q.; Luo, Y. L.; Li, N. et al. High-performance electrochemical NO reduction into NH3 by MoS2 nanosheet. Angew. Chem., Int. Ed. 2021, 60, 25263–25268.

    Article  CAS  Google Scholar 

  21. Long, J.; Chen, S. M.; Zhang, Y. L.; Guo, C. X.; Fu, X. Y.; Deng, D. H.; Xiao, J. P. Direct electrochemical ammonia synthesis from nitric oxide. Angew. Chem., Int. Ed. 2020, 59, 9711–9718.

    Article  CAS  Google Scholar 

  22. Hunt, S. T.; Milina, M.; Alba-Rubio, A. C.; Hendon, C. H.; Dumesic, J. A.; Román-Leshkov, Y. Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts. Science 2016, 352, 974–978.

    Article  CAS  Google Scholar 

  23. Skúlason, E.; Bligaard, T.; Gudmundsdóttir, S.; Studt, F.; Rossmeisl, J.; Abild-Pedersen, F.; Vegge, T.; Jónsson, H.; Nørskov, J. K. A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction. Phys. Chem. Chem. Phys. 2012, 14, 1235–1245.

    Article  Google Scholar 

  24. Fan, B. B.; Wang, H. Z.; Zhang, H.; Song, Y.; Zheng, X. R.; Li, C. J.; Tan, Y. Q.; Han, X. P.; Deng, Y. D.; Hu, W. B. Phase transfer of Mo2C induced by boron doping to boost nitrogen reduction reaction catalytic activity. Adv. Funct. Mater. 2022, 32, 2110783.

    Article  CAS  Google Scholar 

  25. Cheng, H.; Ding, L. X.; Chen, G. F.; Zhang, L. L.; Xue, J.; Wang, H. H. Molybdenum carbide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions. Adv. Mater. 2018, 30, 1803694.

    Article  Google Scholar 

  26. Qu, X. M.; Shen, L. F.; Mao, Y. J.; Lin, J. X.; Li, Y. Y.; Li, G.; Zhang, Y. Y.; Jiang, Y. X.; Sun, S. G. Facile preparation of carbon shells-coated O-doped molybdenum carbide nanoparticles as high selective electrocatalysts for nitrogen reduction reaction under ambient conditions. ACS Appl. Mater. Interfaces 2019, 11, 31869–31877.

    Article  CAS  Google Scholar 

  27. Liu, Y.; Zhu, X. R.; Zhang, Q. H.; Tang, T.; Zhang, Y.; Gu, L.; Li, Y. F.; Bao, J. C.; Dai, Z. H.; Hu, J. S. Engineering Mo/Mo2C/MoC hetero-interfaces for enhanced electrocatalytic nitrogen reduction. J. Mater. Chem. A 2020, 8, 8920–8926.

    Article  CAS  Google Scholar 

  28. Chen, Y. F.; Gao, B.; Wang, M. Y.; Xiao, X.; Lv, A. J.; Jiao, S. Q.; Chu, P. K. Dual-phase MoC−Mo2C nanosheets prepared by molten salt electrochemical conversion of CO2 as excellent electrocatalysts for the hydrogen evolution reaction. Nano Energy 2021, 90, 106533.

    Article  CAS  Google Scholar 

  29. Ma, R. G.; Zhou, Y.; Chen, Y. F.; Li, P. X.; Liu, Q.; Wang, J. C. Ultrafine molybdenum carbide nanoparticles composited with carbon as a highly active hydrogen-evolution electrocatalyst. Angew. Chem., Int. Ed. 2015, 54, 14723–14727.

    Article  CAS  Google Scholar 

  30. Liu, W.; Han, L. L.; Wang, H. T.; Zhao, X. R.; Boscoboinik, J. A.; Liu, X. J.; Pao, C. W.; Sun, J. Q.; Zhuo, L. C.; Luo, J. et al. FeMo sub-nanoclusters/single atoms for neutral ammonia electrosynthesis. Nano Energy 2020, 77, 105078.

    Article  CAS  Google Scholar 

  31. Xu, J.; Zhang, C. X.; Liu, H. X.; Sun, J. Q.; Xie, R. C.; Qiu, Y.; Lü, F.; Liu, Y. F.; Zhuo, L. C.; Liu, X. J. et al. Amorphous MoOx-stabilized single platinum atoms with ultrahigh mass activity for acidic hydrogen evolution. Nano Energy 2020, 70, 104529.

    Article  CAS  Google Scholar 

  32. Liu, S.; Jin, M. M.; Sun, J. Q.; Qin, Y. J.; Gao, S. S.; Chen, Y.; Zhang, S. S.; Luo, J.; Liu, X. J. Coordination environment engineering to boost electrocatalytic CO2 reduction performance by introducing boron into single-Fe-atomic catalyst. Chem. Eng. J. 2022, 437, 135294.

    Article  CAS  Google Scholar 

  33. Liu, S.; Wang, L.; Yang, H.; Gao, S. S.; Liu, Y. F.; Zhang, S. S.; Chen, Y.; Liu, X. J.; Luo, J. Nitrogen-doped carbon polyhedrons confined Fe-P nanocrystals as high-efficiency bifunctional catalysts for aqueous Zn−CO2 batteries. Small 2022, 18, 2104965.

    Article  CAS  Google Scholar 

  34. Chen, J. Y.; Wang, T. T.; Wang, X. Y.; Yang, B.; Sang, X. H.; Zheng, S. X.; Yao, S. Y.; Li, Z. J.; Zhang, Q. H.; Lei, L. C. et al. Promoting electrochemical CO2 reduction via boosting activation of adsorbed intermediates on iron single-atom catalyst. Adv. Funct. Mater. 2022, 32, 2110174.

    Article  CAS  Google Scholar 

  35. Kong, Y.; Li, Y.; Sang, X. H.; Yang, B.; Li, Z. J.; Zheng, S. X.; Zhang, Q. H.; Yao, S. Y.; Yang, X. X.; Lei, L. C. et al. Atomically dispersed zinc(I) active sites to accelerate nitrogen reduction kinetics for ammonia electrosynthesis. Adv. Mater. 2022, 34, 2103548.

    Article  CAS  Google Scholar 

  36. Chen, J. Y.; Li, Z. J.; Wang, X. Y.; Sang, X. H.; Zheng, S. X.; Liu, S. J.; Yang, B.; Zhang, Q. H.; Lei, L. C.; Dai, L. M. et al. Promoting CO2 electroreduction kinetics on atomically dispersed monovalent ZnI sites by rationally engineering proton-feeding centers. Angew. Chem., Int. Ed. 2022, 61, e202111683.

    CAS  Google Scholar 

  37. Zhang, Y. K.; Wang, X. Y.; Zheng, S. X.; Yang, B.; Li, Z. J.; Lu, J. G.; Zhang, Q. H.; Adli, N. M.; Lei, L. C.; Wu, G. et al. Hierarchical cross-linked carbon aerogels with transition metal-nitrogen sites for highly efficient industrial-level CO2 electroreduction. Adv. Funct. Mater. 2021, 31, 2104377.

    Article  CAS  Google Scholar 

  38. Wang, X. Y.; Feng, S. H.; Lu, W. C.; Zhao, Y. J.; Zheng, S. X.; Zheng, W. Z.; Sang, X. H.; Zheng, L. R.; Xie, Y.; Li, Z. J. et al. A new strategy for accelerating dynamic proton transfer of electrochemical CO2 reduction at high current densities. Adv. Funct. Mater. 2021, 31, 2104243.

    Article  CAS  Google Scholar 

  39. Jin, M. M.; Liu, W.; Sun, J. Q.; Wang, X. Z.; Zhang, S. S.; Luo, J.; Liu, X. J. Highly dispersed Ag clusters for active and stable hydrogen peroxide production. Nano Res., 2022, 15, 5842–5847.

    Article  CAS  Google Scholar 

  40. Yang, M. S.; Liu, Y. F.; Sun, J. Q.; Zhang, S. S.; Liu, X. J.; Luo, J. Integration of partially phosphatized bimetal centers into trifunctional catalyst for high-performance hydrogen production and flexible Zn-air battery. Sci. China Mater. 2022, 65, 1176–1186.

    Article  CAS  Google Scholar 

  41. Xu, J.; Lai, S. H.; Qi, D. F.; Hu, M.; Peng, X. Y.; Liu, Y. F.; Liu, W.; Hu, G. Z.; Xu, H.; Li, F. et al. Atomic Fe-Zn dual-metal sites for high-efficiency pH-universal oxygen reduction catalysis. Nano Res. 2021, 14, 1374–1381.

    Article  CAS  Google Scholar 

  42. Peng, X. Y.; Mi, Y. Y.; Liu, X. J.; Sun, J. Q.; Qiu, Y.; Zhang, S. S.; Ke, X. X.; Wang, X. Z.; Luo, J. Self-driven dual hydrogen production system based on a bifunctional single-atomic Rh catalyst. J. Mater. Chem. A 2022, 10, 6134–6145.

    Article  CAS  Google Scholar 

  43. Wang, Y.; Chen, A. R.; Lai, S. H.; Peng, X. Y.; Zhao, S. Z.; Hu, G. Z.; Qiu, Y.; Ren, J. Q.; Liu, X. J.; Luo, J. Self-supported NbSe2 nanosheet arrays for highly efficient ammonia electrosynthesis under ambient conditions. J. Catal. 2020, 381, 78–83.

    Article  CAS  Google Scholar 

  44. Du, C.; Gao, Y. J.; Wang, J. G.; Chen, W. Achieving 59% faradaic efficiency of the N2 electroreduction reaction in an aqueous Zn−N2 battery by facilely regulating the surface mass transport on metallic copper. Chem. Commun. 2019, 55, 12801–12804.

    Article  CAS  Google Scholar 

  45. Lv, X. W.; Liu, X. L.; Gao, L. J.; Liu, Y. P.; Yuan, Z. Y. Iron-doped titanium dioxide hollow nanospheres for efficient nitrogen fixation and Zn−N2 aqueous batteries. J. Mater. Chem. A 2021, 9, 4026–4035.

    Article  CAS  Google Scholar 

  46. Liu, X. J.; Xi, W.; Li, C.; Li, X. B.; Shi, J.; Shen, Y. L.; He, J.; Zhang, L. H.; Xie, L.; Sun, X. M. et al. Nanoporous Zn-doped Co3O4 sheets with single-unit-cell-wide lateral surfaces for efficient oxygen evolution and water splitting. Nano Energy 2018, 44, 371–377.

    Article  CAS  Google Scholar 

  47. Suryanto, B. H. R.; Du, H. L.; Wang, D. B.; Chen, J.; Simonov, A. N.; MacFarlane, D. R. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat. Catal. 2019, 2, 290–296.

    Article  CAS  Google Scholar 

  48. Yang, B.; Ding, W. L.; Zhang, H. H.; Zhang, S. J. Recent progress in electrochemical synthesis of ammonia from nitrogen: Strategies to improve the catalytic activity and selectivity. Energy Environ. Sci. 2021, 14, 672–687.

    Article  CAS  Google Scholar 

  49. Qi D. F.; Lv F.; Wei, T. R.; Jin M. M.; Meng G; Zhang S. S.; Qian Z.;, Liu Q.; Liu W. X.; Ma D.;, Hamdy M. S.; Luo J.; Liu X. J. High-efficiency electrocatalytic NO reduction to NH3 by nanoporous VN. Nano Res. Energy 2022, 1, e9120022.

    Article  Google Scholar 

  50. Hou, J. R.; Peng, X. Y.; Sun, J. Q.; Zhang, S. S.; Liu, Q.; Wang, X. Z.; Luo, J.; Liu, X. J. Accelerating hydrazine-assisted hydrogen production kinetics with Mn dopant modulated CoS2 nanowire arrays. Inorg. Chem. Front. 2022, 9, 3047–3058.

    Article  CAS  Google Scholar 

  51. Meng, G.; Wei, T. R.; Liu, W. J.; Li, W. B.; Zhang, S. S.; Liu, W. X.; Liu, Q.; Bao, H. H.; Luo, J.; Liu, X. J. NiFe layered double hydroxide nanosheet array for high-efficiency electrocatalytic reduction of nitric oxide to ammonia. Chem. Commun. 2022, 58, 8097–8100.

    Article  CAS  Google Scholar 

  52. Wang, X. Z.; Liu, S.; Zhang, H.; Zhang, S. S.; Meng, G.; Liu, Q.; Sun, Z. Y.; Luo, J.; Liu, X. J. Polycrystalline SnSx nanofilm enables CO2 electroreduction to formate with high current density. Chem. Commun. 2022, 58, 7654–7657.

    Article  CAS  Google Scholar 

  53. Zhang, H.; Qiu, Y.; Zhang, S. S.; Liu, Q.; Luo, J.; Liu, X. J. Nitrogen-incorporated iron phosphosulfide nanosheets as efficient bifunctional electrocatalysts for energy-saving hydrogen evolution. Ionics 2022, 8, 3927–3934.

    Article  Google Scholar 

  54. Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

    Article  CAS  Google Scholar 

  55. Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res., 2022, 15, 5792–5815.

    Article  CAS  Google Scholar 

  56. Li, R. Z.; Wang, D. S. Understanding the structure-performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

    Article  CAS  Google Scholar 

  57. Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (Nos. 22075211, 22109118, 21601136, 51971157, and 51621003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ge Meng, Xianyun Peng or Xijun Liu.

Electronic Supplementary Material

12274_2022_4747_MOESM1_ESM.pdf

MoC nanocrystals confined in N-doped carbon nanosheets toward highly selective electrocatalytic nitric oxide reduction to ammonia

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, G., Jin, M., Wei, T. et al. MoC nanocrystals confined in N-doped carbon nanosheets toward highly selective electrocatalytic nitric oxide reduction to ammonia. Nano Res. 15, 8890–8896 (2022). https://doi.org/10.1007/s12274-022-4747-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4747-y

Keywords

Navigation