Skip to main content
Log in

Lanthanide-based ratiometric luminescence nanothermometry

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Luminescent nanothermometry can precisely and remotely measure the internal temperature of objects at nanoscale precision, which, therefore, has been placed at the forefront of scientific attention. In particular, due to the high photochemical stability, low toxicity, rich working mechanisms, and superior thermometric performance, lanthanide-based ratiometric luminesencent thermometers are finding prevalent uses in integrated electronics and optoelectronics, property analysis of in-situ tracking, biomedical diagnosis and therapy, and wearable e-health monitoring. Despite recent progresses, it remains debate in terms of the underlying temperature-sensing mechanisms, the quantitative characterization of performance, and the reliability of temperature readouts. In this review, we show the origin of thermal response luminescence, rationalize the ratiometric scheme or thermometric mechanisms, delve into the problems in the characterization of thermometric performance, discuss the universal rules for the quantitative comparison, and showcase the cutting-edge design and emerging applications of lanthanide-based ratiometric thermometers. Finally, we cast a look at the challenges and emerging opportunities for further advances in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, X. D.; Wolfbeis, O. S.; Meier, R. J. Luminescent probes and sensors for temperature. Chem. Soc. Rev. 2013, 42, 7834–7869.

    Article  CAS  Google Scholar 

  2. Brites, C. D. S.; Balabhadra, S.; Carlos, L. D. Lanthanide-based thermometers: At the cutting-edge of luminescence thermometry. Adv. Opt. Mater. 2019, 7, 1801239.

    Article  Google Scholar 

  3. Zhou, J. J.; Del Rosal, B.; Jaque, D.; Uchiyama, S.; Jin, D. Y. Advances and challenges for fluorescence nanothermometry. Nat. Methods 2020, 17, 967–980.

    Article  CAS  Google Scholar 

  4. Mi, C.; Zhou, J. J.; Wang, F.; Lin, G. G.; Jin, D. Y. Ultrasensitive ratiometric nanothermometer with large dynamic range and photostability. Chem. Mater. 2019, 31, 9480–9487.

    Article  CAS  Google Scholar 

  5. Brites, C. D. S.; Xie, X. J.; Debasu, M. L.; Qin, X.; Chen, R. F.; Huang, W.; Rocha, J.; Liu, X. G.; Carlos, L. D. Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry. Nat. Nanotechnol. 2016, 11, 851–856.

    Article  CAS  Google Scholar 

  6. Geitenbeek, R. G.; Nieuwelink, A. E.; Jacobs, T. S.; Salzmann, B. B. V.; Goetze, J.; Meijerink, A.; Weckhuysen, B. M. In situ luminescence thermometry to locally measure temperature gradients during catalytic reactions. ACS Catal. 2018, 8, 2397–2401.

    Article  CAS  Google Scholar 

  7. Brites, C. D. S.; Millán, A.; Carlos, L. D. Lanthanides in luminescent thermometry. Handb. Phys. Chem. Rare Earths 2016, 49, 339–427.

    Article  CAS  Google Scholar 

  8. Brites, C. D. S.; Lima, P. P.; Silva, N. J. O.; Millán, A.; Amaral, V. S.; Palacio, F.; Carlos, L. D. Thermometry at the nanoscale. Nanoscale 2012, 4, 4799–4829.

    Article  CAS  Google Scholar 

  9. Jaque, D.; Vetrone, F. Luminescence nanothermometry. Nanoscale 2012, 4, 4301–4326.

    Article  CAS  Google Scholar 

  10. Maestro, L. M.; Rodríguez, E. M.; Rodríguez, F. S.; La Cruz, M. C. I. D.; Juarranz, A.; Naccache, R.; Vetrone, F.; Jaque, D.; Capobianco, J. A.; Solé, J. G. CdSe quantum dots for two-photon fluorescence thermal imaging. Nano Lett. 2010, 10, 5109–5115.

    Article  CAS  Google Scholar 

  11. Hernández-Rodríguez, M. A.; Lozano-Gorrín, A. D.; Martín, I. R.; Rodríguez-Mendoza, U. R.; Lavín, V. Comparison of the sensitivity as optical temperature sensor of nano-perovskite doped with Nd3+ ions in the first and second biological windows. Sens. Actuators B: Chem. 2018, 255, 970–976.

    Article  Google Scholar 

  12. Donner, J. S.; Thompson, S. A.; Kreuzer, M. P.; Baffou, G.; Quidant, R. Mapping intracellular temperature using green fluorescent protein. Nano Lett. 2012, 12, 2107–2111.

    Article  CAS  Google Scholar 

  13. Walker, G. W.; Sundar, V. C.; Rudzinski, C. M.; Wun, A. W.; Bawendi, M. G.; Nocera, D. G. Quantum-dot optical temperature probes. Appl. Phys. Lett. 2003, 83, 3555–3557.

    Article  CAS  Google Scholar 

  14. Vetrone, F.; Naccache, R.; Zamarrón, A.; De La Fuente, A. J.; Sanz-Rodríguez, F.; Maestro, L. M.; Rodriguez, E. M.; Jaque, D.; Solé, J. G.; Capobianco, J. A. Temperature sensing using fluorescent nanothermometers. ACS Nano 2010, 4, 3254–3258.

    Article  CAS  Google Scholar 

  15. Li, Q.; He, Y.; Chang, J.; Wang, L.; Chen, H. Z.; Tan, Y. W.; Wang, H. Y.; Shao, Z. Z. Surface-modified silicon nanoparticles with ultrabright photoluminescence and single-exponential decay for nanoscale fluorescence lifetime imaging of temperature. J. Am. Chem. Soc. 2013, 135, 14924–14927.

    Article  CAS  Google Scholar 

  16. Del Rosal, B.; Ximendes, E.; Rocha, U.; Jaque, D. In vivo luminescence nanothermometry:From materials to applications. Adv. Opt. Mater. 2017, 5, 1600508.

    Article  Google Scholar 

  17. Quintanilla, M.; Liz-Marzán, L. M. Guiding rules for selecting a nanothermometer. Nano Today 2018, 19, 126–145.

    Article  CAS  Google Scholar 

  18. Trejgis, K.; Bednarkiewicz, A.; Marciniak, L. Engineering excited state absorption based nanothermometry for temperature sensing and imaging. Nanoscale 2020, 12, 4667–4675.

    Article  CAS  Google Scholar 

  19. Jung, W.; Kim, Y. W.; Yim, D.; Yoo, J. Y. Microscale surface thermometry using SU8/Rhodamine-B thin layer. Sens. Actuators A:Phys. 2011, 171, 228–232.

    Article  CAS  Google Scholar 

  20. Kiyonaka, S.; Kajimoto, T.; Sakaguchi, R.; Shinmi, D.; Omatsu-Kanbe, M.; Matsuura, H.; Imamura, H.; Yoshizaki, T.; Hamachi, I.; Morii, T. et al. Genetically encoded fluorescent thermosensors visualize subcellular thermoregulation in living cells. Nat. Methods 2013, 10, 1232–1238.

    Article  CAS  Google Scholar 

  21. McLaurin, E. J.; Vlaskin, V. A.; Gamelin, D. R. Water-soluble dual-emitting nanocrystals for ratiometric optical thermometry. J. Am. Chem. Soc. 2011, 133, 14978–14980.

    Article  CAS  Google Scholar 

  22. Okabe, K.; Inada, N.; Gota, C.; Harada, Y.; Funatsu, T.; Uchiyama, S. Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. Nat. Commun. 2012, 3, 705.

    Article  Google Scholar 

  23. Jia, M. C.; Fu, Z. L.; Liu, G. F.; Sun, Z.; Li, P. P.; Zhang, A. Q.; Lin, F.; Hou, B. F.; Chen, G. Y. NIR-II/III luminescence ratiometric nanothermometry with phonon-tuned sensitivity. Adv. Opt. Mater. 2020, 8, 1901173.

    Article  CAS  Google Scholar 

  24. Suo, H.; Zhao, X. Q.; Zhang, Z. Y.; Wang, Y.; Sun, J. S.; Jin, M. K.; Guo, C. F. Rational design of ratiometric luminescence thermometry based on thermally coupled levels for bioapplications. Laser Photonics Rev. 2021, 15, 2000319.

    Article  CAS  Google Scholar 

  25. Dong, B.; Cao, B. S.; He, Y. Y.; Liu, Z.; Li, Z. P.; Feng, Z. Q. Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides. Adv. Mater. 2012, 24, 1987–1993.

    Article  CAS  Google Scholar 

  26. Wang, X. F.; Liu, Q.; Bu, Y. Y.; Liu, C. S.; Liu, T.; Yan, X. H. Optical temperature sensing of rare-earth ion doped phosphors. RSC Adv. 2015, 5, 86219–86236.

    Article  CAS  Google Scholar 

  27. Jia, M. C.; Lin, F.; Sun, Z.; Fu, Z. L. Novel excited-state nanothermometry combining the red-shift of charge-transfer bands and a thermal coupling effect. Inorg. Chem. Front. 2020, 7, 3932–3937.

    Article  CAS  Google Scholar 

  28. Xu, X.; Wang, Z.; Lei, P. P.; Yu, Y. N.; Yao, S.; Song, S. Y.; Liu, X. L.; Su, Y.; Dong, L. L.; Feng, J. et al. α-NaYb(Mn)F4:Er3+Tm3+@NaYF4 UCNPs as “band-shape” luminescent nanothermometers over a wide temperature range. ACS Appl. Mater. Interfaces 2015, 7, 20813–20819.

    Article  CAS  Google Scholar 

  29. Zhou, J.; Liu, Z.; Li, F. Y. Upconversion nanophosphors for small-animal imaging. Chem. Soc. Rev. 2012, 41, 1323–1349.

    Article  CAS  Google Scholar 

  30. Zheng, W.; Huang, P.; Tu, D. T.; Ma, E.; Zhu, H. M.; Chen, X. Y. Lanthanide-doped upconversion nano-bioprobes: Electronic structures, optical properties, and biodetection. Chem. Soc. Rev. 2015, 44, 1379–1415.

    Article  CAS  Google Scholar 

  31. Dong, H.; Sun, L. D.; Yan, C. H. Local structure engineering in lanthanide-doped nanocrystals for tunable upconversion emissions. J. Am. Chem. Soc. 2021, 143, 20546–20561.

    Article  CAS  Google Scholar 

  32. McLaurin, E. J.; Bradshaw, L. R.; Gamelin, D. R. Dual-emitting nanoscale temperature sensors. Chem. Mater. 2013, 25, 1283–1292.

    Article  CAS  Google Scholar 

  33. Hu, T.; Gao, Y.; Molokeev, M.; Xia, Z. G.; Zhang, Q. Y. Non-stoichiometry in Ca2Al2SiO7 enabling mixed-valent europium toward ratiometric temperature sensing. Sci. China Mater. 2019, 62, 1807–1814.

    Article  CAS  Google Scholar 

  34. Labrador-Páez, L.; Pedroni, M.; Speghini, A.; García-Solé, J.; Haro-González, P.; Jaque, D. Reliability of rare-earth-doped infrared luminescent nanothermometers. Nanoscale 2018, 10, 22319–22328.

    Article  Google Scholar 

  35. Bednarkiewicz, A.; Marciniak, L.; Carlos, L. D.; Jaque, D. Standardizing luminescence nanothermometry for biomedical applications. Nanoscale 2020, 12, 14405–14421.

    Article  CAS  Google Scholar 

  36. Shinn, M. D.; Sibley, W. A.; Drexhage, M. G.; Brown, R. N. Optical transitions of Er3+ ions in fluorozirconate glass. Phys. Rev. B 1983, 27, 6635–6648.

    Article  CAS  Google Scholar 

  37. Kim, Y. H.; Arunkumar, P.; Kim, B. Y.; Unithrattil, S.; Kim, E.; Moon, S. H.; Hyun, J. Y.; Kim, K. H.; Lee, D.; Lee, J. S. et al. A zero-thermal-quenching phosphor. Nat. Mater. 2017, 16, 543–550.

    Article  CAS  Google Scholar 

  38. Chen, G. Y.; Liu, H. C.; Liang, H. J.; Somesfalean, G.; Zhang, Z. G. Upconversion emission enhancement in Yb3+Er3+-codoped Y2O3 nanocrystals by tridoping with Li+ ions. J. Phys. Chem. C 2008, 112, 12030–12036.

    Article  CAS  Google Scholar 

  39. Suo, H.; Guo, C. F.; Wang, W. B.; Li, T.; Duan, C. K.; Yin, M. Mechanism and stability of spectrally pure green up-conversion emission in Yb3+Ho3+ co-doped Ba5Gd8Zn4O21 phosphors. Dalton Trans. 2016, 45, 2629–2636.

    Article  CAS  Google Scholar 

  40. Zhou, J. J.; Wen, S. H.; Liao, J. Y.; Clarke, C.; Tawfik, S. A.; Ren, W.; Mi, C.; Wang, F.; Jin, D. Y. Activation of the surface dark-layer to enhance upconversion in a thermal field. Nat. Photonics 2018, 12, 154–158.

    Article  CAS  Google Scholar 

  41. Mi, C.; Zhou, J. J.; Wang, F.; Jin, D. Y. Thermally enhanced NIR-NIR anti-Stokes emission in rare earth doped nanocrystals. Nanoscale 2019, 11, 12547–12552.

    Article  CAS  Google Scholar 

  42. Auzel, F. Multiphonon-assisted anti-Stokes and Stokes fluorescence of triply ionized rare-earth ions. Phys. Rev. B 1976, 13, 2809–2817.

    Article  CAS  Google Scholar 

  43. Ximendes, E. C.; Rocha, U.; Sales, T. O.; Fernández, N.; Sanz-Rodríguez, F.; Martín, I. R.; Jacinto, C.; Jaque, D. In vivo subcutaneous thermal video recording by supersensitive infrared nanothermometers. Adv. Funct. Mater. 2017, 27, 1702249.

    Article  Google Scholar 

  44. Yamada, N.; Shionoya, S.; Kushida, T. Phonon-assisted energy transfer between trivalent rare earth ions. J. Phys. Soc. Jpn. 1972, 32, 1577–1586.

    Article  CAS  Google Scholar 

  45. Ximendes, E. C.; Santos, W. Q.; Rocha, U.; Kagola, U. K.; Sanz-Rodríguez, F.; Fernández, N.; Da Silva Gouveia-Neto, A.; Bravo, D.; Domingo, A. M.; Del Rosal, B. et al. Unveiling in vivo subcutaneous thermal dynamics by infrared luminescent nanothermometers. Nano Lett. 2016, 16, 1695–1703.

    Article  CAS  Google Scholar 

  46. Cooke, D. W.; Bennett, B. L.; Muenchausen, R. E.; Lee, J. K.; Nastasi, M. A. Intrinsic ultraviolet luminescence from Lu2O3, Lu2SiO5 and Lu2SiO5: Ce3+. J. Lumin. 2004, 106, 125–132.

    Article  CAS  Google Scholar 

  47. Gao, Y.; Huang, F.; Lin, H.; Zhou, J. C.; Xu, J.; Wang, Y. S. A novel optical thermometry strategy based on diverse thermal response from two intervalence charge transfer states. Adv. Funct. Mater. 2016, 26, 3139–3145.

    Article  CAS  Google Scholar 

  48. Wang, Z. P.; Ananias, D.; Carné-Sánchez, A.; Brites, C. D. S.; Imaz, I.; Maspoch, D.; Rocha, J.; Carlos, L. D. Lanthanide-organic framework nanothermometers prepared by spray-drying. Adv. Funct. Mater. 2015, 25, 2824–2830.

    Article  CAS  Google Scholar 

  49. Wang, L.; Xie, R. J.; Li, Y. Q.; Wang, X. J.; Ma, C. G.; Luo, D.; Takeda, T.; Tsai, Y. T.; Liu, R. S.; Hirosaki, N. Ca1−xLixAl1−xSi1+xN3:Eu2+ solid solutions as broadband, color-tunable and thermally robust red phosphors for superior color rendition white light-emitting diodes. Light Sci. Appl. 2016, 5, e16155.

    Article  CAS  Google Scholar 

  50. Zou, H.; Yang, X. Q.; Chen, B.; Du, Y. Y.; Ren, B. Y.; Sun, X. W.; Qiao, X.; Zhang, Q. W.; Wang, F. Thermal enhancement of upconversion by negative lattice expansion in orthorhombic Yb2W3O12. Angew. Chem., Int. Ed. 2019, 58, 17255–17259.

    Article  CAS  Google Scholar 

  51. Liao, J. S.; Wang, M. H.; Lin, F. L.; Han, Z.; Fu, B.; Tu, D. T.; Chen, X. Y.; Qiu, B.; Wen, H. R. Thermally boosted upconversion and downshifting luminescence in Sc2(MoO4)3:Yb/Er with two-dimensional negative thermal expansion. Nat. Commun. 2022, 13, 2090.

    Article  CAS  Google Scholar 

  52. Back, M.; Ueda, J.; Xu, J.; Murata, D.; Brik, M. G.; Tanabe, S. Ratiometric luminescent thermometers with a customized phase-transition-driven fingerprint in perovskite oxides. ACS Appl. Mater. Interfaces 2019, 11, 38937–38945.

    Article  CAS  Google Scholar 

  53. Yu, D. C.; Li, H. Y.; Zhang, D. W.; Zhang, Q. Y.; Meijerink, A.; Suta, M. One ion to catch them all: Targeted high-precision Boltzmann thermometry over a wide temperature range with Gd3+. Light Sci. Appl. 2021, 10, 236.

    Article  CAS  Google Scholar 

  54. Wade, S. A.; Collins, S. F.; Baxter, G. W. Fluorescence intensity ratio technique for optical fiber point temperature sensing. J. Appl. Phys. 2003, 94, 4743–4756.

    Article  CAS  Google Scholar 

  55. Brites, C. D. S.; Lima, P. P.; Silva, N. J. O.; Millán, A.; Amaral, V. S.; Palacio, F.; Carlos, L. D. Lanthanide-based luminescent molecular thermometers. New J. Chem. 2011, 35, 1177–1183.

    Article  CAS  Google Scholar 

  56. Sun, X. K.; Sun, J.; Dong, B.; Huang, G. S.; Zhang, L.; Zhou, W. H.; Lv, J. K.; Zhang, X. R.; Liu, M.; Xu, L. et al. Noninvasive temperature monitoring for dual-modal tumor therapy based on lanthanide-doped up-conversion nanocomposites. Biomaterials 2019, 201, 42–52.

    Article  CAS  Google Scholar 

  57. Wickberg, A.; Mueller, J. B.; Mange, Y. J.; Fischer, J.; Nann, T.; Wegener, M. Three-dimensional micro-printing of temperature sensors based on up-conversion luminescence. Appl. Phys. Lett. 2015, 106, 133103.

    Article  Google Scholar 

  58. Pandey, A.; Rai, V. K.; Kumar, V.; Kumar, V.; Swart, H. C. Upconversion based temperature sensing ability of Er3+-Yb3+ codoped SrWO4: An optical heating phosphor. Sens. Actuators B: Chem. 2015, 209, 352–358.

    Article  CAS  Google Scholar 

  59. Liu, G. F.; Jiang, F.; Chen, Y. Q.; Yu, C.; Ding, B. B.; Shao, S.; Jia, M. C.; Ma, P. A.; Fu, Z. L.; Lin, J. Superior temperature sensing of small-sized upconversion nanocrystals for simultaneous bioimaging and enhanced synergetic therapy. Nanomed.: Nanotechnol., Biol. Med. 2020, 24, 102135.

    Article  CAS  Google Scholar 

  60. León-Luis, S. F.; Rodríguez-Mendoza, U. R.; Martín, I. R.; Lalla, E.; Lavín, V. Effects of Er3+ concentration on thermal sensitivity in optical temperature fluorotellurite glass sensors. Sens. Actuators B: Chem. 2013, 176, 1167–1175.

    Article  Google Scholar 

  61. León-Luis, S. F.; Rodríguez-Mendoza, U. R.; Haro-González, P.; Martín, I. R.; Lavín, V. Role of the host matrix on the thermal sensitivity of Er3+ luminescence in optical temperature sensors. Sens. Actuators B: Chem. 2012, 174, 176–186.

    Article  Google Scholar 

  62. Suo, H.; Guo, C. F.; Zheng, J. M.; Zhou, B.; Ma, C. G.; Zhao, X. Q.; Li, T.; Guo, P.; Goldys, E. M. Sensitivity modulation of upconverting thermometry through engineering phonon energy of a matrix. ACS Appl. Mater. Interfaces 2016, 8, 30312–30319.

    Article  CAS  Google Scholar 

  63. Suo, H.; Zhao, X. Q.; Zhang, Z. Y.; Shi, R.; Wu, Y. F.; Xiang, J. M.; Guo, C. F. Local symmetric distortion boosted photon up-conversion and thermometric sensitivity in lanthanum oxide nanospheres. Nanoscale 2018, 10, 9245–9251.

    Article  CAS  Google Scholar 

  64. Jia, M. C.; Sun, Z.; Lin, F.; Hou, B. F.; Li, X.; Zhang, M. X.; Wang, H. Y.; Xu, Y.; Fu, Z. L. Prediction of thermal-coupled thermometric performance of Er3+. J. Phys. Chem. Lett. 2019, 10, 5786–5790.

    Article  CAS  Google Scholar 

  65. Savchuk, O. A.; Carvajal, J. J.; Pujol, M. C.; Barrera, E. W.; Massons, J.; Aguilo, M.; Diaz, F. Ho, Yb: KLu(WO4)2 nanoparticles: A versatile material for multiple thermal sensing purposes by luminescent thermometry. J. Phys. Chem. C 2015, 119, 18546–18558.

    Article  CAS  Google Scholar 

  66. Gao, Y.; Huang, F.; Lin, H.; Xu, J.; Wang, Y. S. Intervalence charge transfer state interfered Pr3+ luminescence: A novel strategy for high sensitive optical thermometry. Sens. Actuators B:Chem. 2017, 243, 137–143.

    Article  CAS  Google Scholar 

  67. Li, P. P.; Jia, M. C.; Liu, G. F.; Zhang, A. Q.; Sun, Z.; Fu, Z. L. Investigation on the fluorescence intensity ratio sensing thermometry based on nonthermally coupled levels. ACS Appl. Bio Mater. 2019, 2, 1732–1739.

    Article  CAS  Google Scholar 

  68. Brites, C. D. S.; Lima, P. P.; Silva, N. J. O.; Millán, A.; Amaral, V. S.; Palacio, F.; Carlos, L. D. Ratiometric highly sensitive luminescent nanothermometers working in the room temperature range. Applications to heat propagation in nanofluids. Nanoscale 2013, 5, 7572–7580.

    Article  CAS  Google Scholar 

  69. Jia, M. C.; Sun, Z.; Xu, H. Y.; Jin, X. Y.; Lv, Z. Q.; Sheng, T. Q.; Fu, Z. L. An ultrasensitive luminescent nanothermometer in the first biological window based on phonon-assisted thermal enhancing and thermal quenching. J. Mater. Chem. C 2020, 8, 15603–15608.

    Article  CAS  Google Scholar 

  70. Wang, T. R.; Li, P.; Li, H. R. Color-tunable luminescence of organoclay-based hybrid materials showing potential applications in white LED and thermosensors. ACS Appl. Mater. Interfaces 2014, 6, 12915–12921.

    Article  CAS  Google Scholar 

  71. Brites, C. D. S.; Lima, P. P.; Silva, N. J. O.; Millán, A.; Amaral, V. S.; Palacio, F.; Carlos, L. D. A luminescent molecular thermometer for long-term absolute temperature measurements at the nanoscale. Adv. Mater. 2010, 22, 4499–4504.

    Article  CAS  Google Scholar 

  72. Sun, Z.; Jia, M. C.; Wei, Y. L.; Cheng, J. C.; Sheng, T. Q.; Fu, Z. L. Constructing new thermally coupled levels based on different emitting centers for high sensitive optical thermometer. Chem. Eng. J. 2020, 381, 122654.

    Article  CAS  Google Scholar 

  73. Savchuk, O. A.; Carvajal, J. J.; Brites, C. D. S.; Carlos, L. D.; Aguilo, M.; Diaz, F. Upconversion thermometry: A new tool to measure the thermal resistance of nanoparticles. Nanoscale 2018, 10, 6602–6610.

    Article  CAS  Google Scholar 

  74. Neto, A. N. C.; Mamontova, E.; Botas, A. M. P.; Brites, C. D. S.; Ferreira, R. A. S.; Rouquette, J.; Guari, Y.; Larionova, J.; Long, J.; Carlos, L. D. Rationalizing the thermal response of dual-center molecular thermometers: The example of an Eu/Tb coordination complex. Adv. Opt. Mater. 2022, 10, 2101870.

    Article  Google Scholar 

  75. Sun, Z.; Fu, Z. L.; Ma, L.; Cao, H. W.; Wang, M. L.; Cao, H. J.; Zhang, A. Q. Excellent multi-color emission and multi-mode optical ratiometric thermometer in (Ca, Tb, Eu, Sm)Nb2O6 phosphors based on wide O2−→Nb5+ CTB. Appl. Surf. Sci. 2022, 575, 151791.

    Article  CAS  Google Scholar 

  76. Lu, H. Y.; Hao, H. Y.; Gao, Y. C.; Li, D. Y.; Shi, G.; Song, Y. L.; Wang, Y. X.; Zhang, X. R. Optical sensing of temperature based on non-thermally coupled levels and upconverted white light emission of a Gd2(WO4)3 phosphor co-doped with in Ho(III), Tm(III), and Yb(III). Microchim. Acta 2017, 184, 641–646.

    Article  CAS  Google Scholar 

  77. Xu, M.; Chen, D. Q.; Huang, P.; Wan, Z. Y.; Zhou, Y.; Ji, Z. G. A dual-functional upconversion core@shell nanostructure for white-light-emission and temperature sensing. J. Mater. Chem. C 2016, 4, 6516–6524.

    Article  CAS  Google Scholar 

  78. Wang, S. X.; Ma, S. W.; Wu, J. M.; Ye, Z. M.; Cheng, X. A promising temperature sensing strategy based on highly sensitive Pr3+-doped SrRE2O4 (RE = Sc, Lu and Y) luminescent thermometers. Chem. Eng. J. 2020, 393, 124564.

    Article  CAS  Google Scholar 

  79. Brites, C. D. S.; Fiaczyk, K.; Ramalho, J. F. C. B.; Sójka, M.; Carlos, L. D.; Zych, E. Widening the temperature range of luminescent thermometers through the intra- and interconfigurational transitions of Pr3+. Adv. Opt. Mater. 2018, 6, 1701318.

    Article  Google Scholar 

  80. Jia, M. C.; Sun, Z.; Zhang, M. X.; Xu, H. Y.; Fu, Z. L. What determines the performance of lanthanide-based ratiometric nanothermometers? Nanoscale 2020, 12, 20776–20785.

    Article  CAS  Google Scholar 

  81. Van Swieten, T. P.; Meijerink, A.; Rabouw, F. T. Impact of noise and background on measurement uncertainties in luminescence thermometry. ACS Photonics 2022, 9, 1366–1374.

    Article  CAS  Google Scholar 

  82. Thiem, J.; Spelthann, S.; Neumann, J.; Ruehl, A.; Ristau, D. Three-dimensional nanothermometry below the diffraction limit. Opt. Lett. 2021, 46, 3352–3355.

    Article  CAS  Google Scholar 

  83. Nexha, A.; Carvajal, J. J.; Pujol, M. C.; Diaz, F.; Aguiló, M. Lanthanide doped luminescence nanothermometers in the biological windows: Strategies and applications. Nanoscale 2021, 13, 7913–7987.

    Article  CAS  Google Scholar 

  84. Cui, X. S.; Cheng, Y.; Lin, H.; Huang, F.; Wu, Q. P.; Wang, Y. S. Size-dependent abnormal thermo-enhanced luminescence of ytterbium-doped nanoparticles. Nanoscale 2017, 9, 13794–13799.

    Article  CAS  Google Scholar 

  85. Suo, H.; Zhao, X. Q.; Zhang, Z. Y.; Guo, C. F. Ultra-sensitive optical nano-thermometer LaPO4: Yb3+/Nd3+ based on thermo-enhanced NIR-to-NIR emissions. Chem. Eng. J. 2020, 389, 124506.

    Article  CAS  Google Scholar 

  86. Liang, L. L.; Liu, X. G. Nanocrystals feel the heat. Nat. Photonics 2018, 12, 124–125.

    Article  CAS  Google Scholar 

  87. Hu, Y. Q.; Shao, Q. Y.; Zhang, P. G.; Dong, Y.; Fang, F.; Jiang, J. Q. Mechanistic investigations on the dramatic thermally induced luminescence enhancement in upconversion nanocrystals. J. Phys. Chem. C 2018, 122, 26142–26152.

    Article  CAS  Google Scholar 

  88. Martínez, E. D.; Brites, C. D. S.; Carlos, L. D.; García-Flores, A. F.; Urbano, R. R.; Rettori, C. Electrochromic switch devices mixing small- and large-sized upconverting nanocrystals. Adv. Funct. Mater. 2019, 29, 1807758.

    Article  Google Scholar 

  89. Zou, H.; Chen, B.; Hu, Y. F.; Zhang, Q. W.; Wang, X. S.; Wang, F. Simultaneous enhancement and modulation of upconversion by thermal stimulation in Sc2Mo3O12 crystals. J. Phys. Chem. Lett. 2020, 11, 3020–3024.

    Article  CAS  Google Scholar 

  90. Wang, S. X.; Ma, S. W.; Zhang, G. G.; Ye, Z. M.; Cheng, X. High-performance Pr3+-doped scandate optical thermometry: 200 K of sensing range with relative temperature sensitivity above 2%·K−1. ACS Appl. Mater. Interfaces 2019, 11, 42330–42338.

    Article  CAS  Google Scholar 

  91. Wang, Y. B.; Lei, L.; Ye, R. G.; Jia, G. H.; Hua, Y. J.; Deng, D. G.; Xu, S. Q. Integrating positive and negative thermal quenching effect for ultrasensitive ratiometric temperature sensing and anti-counterfeiting. ACS Appl. Mater. Interfaces 2021, 13, 23951–23959.

    Article  CAS  Google Scholar 

  92. Pan, Y.; Xie, X. J.; Huang, Q. W.; Gao, C.; Wang, Y. B.; Wang, L. X.; Yang, B. X.; Su, H. Q.; Huang, L.; Huang, W. Inherently Eu2+/Eu3+ codoped Sc2O3 nanoparticles as high-performance nanothermometers. Adv. Mater. 2018, 30, 1705256.

    Article  Google Scholar 

  93. Wang, Q.; Liao, M.; Lin, Q. M.; Xiong, M. X.; Mu, Z. F.; Wu, F. G. A review on fluorescence intensity ratio thermometer based on rare-earth and transition metal ions doped inorganic luminescent materials. J. Alloys Compd. 2021, 850, 156744.

    Article  CAS  Google Scholar 

  94. Wu, X. F.; Zhan, S. P.; Han, J. B.; Liu, Y. X. Nanoscale ultrasensitive temperature sensing based on upconversion nanoparticles with lattice self-adaptation. Nano Lett. 2021, 21, 272–278.

    Article  Google Scholar 

  95. Marciniak, L.; Piotrowski, W.; Szalkowski, M.; Kinzhybalo, V.; Drozd, M.; Dramicanin, M.; Bednarkiewicz, A. Highly sensitive luminescence nanothermometry and thermal imaging facilitated by phase transition. Chem. Eng. J. 2022, 427, 131941.

    Article  CAS  Google Scholar 

  96. Rodríguez-Sevilla, P.; Arita, Y.; Liu, X. G.; Jaque, D.; Dholakia, K. The temperature of an optically trapped, rotating microparticle. ACS Photonics 2018, 5, 3772–3778.

    Article  Google Scholar 

  97. Bolek, P.; Zeler, J.; Brites, C. D. S.; Trojan-Piegza, J.; Carlos, L. D.; Zych, E. Ga-modified YAG: Pr3+ dual-mode tunable luminescence thermometers. Chem. Eng. J. 2021, 421, 129764.

    Article  CAS  Google Scholar 

  98. Wu, M.; Deng, D. G.; Ruan, F. P.; Chen, B. W.; Xu, S. Q. A spatial/temporal dual-mode optical thermometry based on double-sites dependent luminescence of Li4SrCa(SiO4)2:Eu2+ phosphors with highly sensitive luminescent thermometer. Chem. Eng. J. 2020, 396, 125178.

    Article  CAS  Google Scholar 

  99. Maciejewska, K.; Marciniak, L. Multimodal Stokes and Anti-Stokes luminescent thermometers based on GdP5O14 co-doped with Cr3+ and Nd3+ ions. Chem. Eng. J. 2020, 402, 126197.

    Article  CAS  Google Scholar 

  100. Cao, B. S.; Bao, Y. N.; Liu, Y.; Shang, J. Y.; Zhang, Z. Y.; He, Y. Y.; Feng, Z. Q.; Dong, B. Wide-range and highly-sensitive optical thermometers based on the temperature-dependent energy transfer from Er to Nd in Er/Yb/Nd codoped NaYF4 upconversion nanocrystals. Chem. Eng. J. 2020, 385, 123906.

    Article  CAS  Google Scholar 

  101. Maturi, F. E.; Brites, C. D. S.; Ximendes, E. C.; Mills, C.; Olsen, B.; Jaque, D.; Ribeiro, S. J. L.; Carlos, L. D. Going above and beyond: A tenfold gain in the performance of luminescence thermometers joining multiparametric sensing and multiple regression. Laser Photonics Rev. 2021, 15, 2100301.

    Article  CAS  Google Scholar 

  102. Fu, H. H.; Liu, C. P.; Peng, P. F.; Jiang, F. L.; Liu, Y. S.; Hong, M. C. Peasecod-like hollow upconversion nanocrystals with excellent optical thermometric performance. Adv. Sci. 2020, 7, 2000731.

    Article  CAS  Google Scholar 

  103. Liu, Y.; Bai, G. X.; Lyu, Y. X.; Hua, Y. J.; Ye, R. G.; Zhang, J. J.; Chen, L.; Xu, S. Q.; Hao, J. H. Ultrabroadband tuning and fine structure of emission spectra in lanthanide Er-doped ZnSe nanosheets for display and temperature sensing. ACS Nano 2020, 14, 16003–16012.

    Article  CAS  Google Scholar 

  104. Kaczmarek, A. M.; Suta, M.; Rijckaert, H.; Abalymov, A.; Van Driessche, I.; Skirtach, A. G.; Meijerink, A.; Van Der Voort, P. Visible and NIR upconverting Er3+-Yb3+ luminescent nanorattles and other hybrid PMO-inorganic structures for in vivo nanothermometry. Adv. Funct. Mater. 2020, 30, 2003101.

    Article  CAS  Google Scholar 

  105. Cerón, E. N.; Ortgies, D. H.; Del Rosal, B.; Ren, F. Q.; Benayas, A.; Vetrone, F.; Ma, D. L.; Sanz-Rodríguez, F.; Solé, J. G.; Jaque, D. et al. Hybrid nanostructures for high-sensitivity luminescence nanothermometry in the second biological window. Adv. Funct. Mater. 2015, 27, 4781–4787.

    Article  Google Scholar 

  106. Qiu, X. C.; Zhou, Q. W.; Zhu, X. J.; Wu, Z. G.; Feng, W.; Li, F. Y. Ratiometric upconversion nanothermometry with dual emission at the same wavelength decoded via a time-resolved technique. Nat. Commun. 2020, 11, 4.

    Article  CAS  Google Scholar 

  107. Yu, S. H.; Xu, J.; Shang, X. Y.; Zheng, W.; Huang, P.; Li, R. F.; Tu, D. T.; Chen, X. Y. A dual-excitation decoding strategy based on NIR hybrid nanocomposites for high-accuracy thermal sensing. Adv. Sci. 2020, 7, 2001589.

    Article  CAS  Google Scholar 

  108. Chen, P.; Xu, X.; Li, D. Y.; Li, Z. X.; Wang, H. Y.; Pi, L. J.; Zhou, X.; Zhai, T. Y. 2D van der Waals rare earth material based ratiometric luminescence thermography integrated on micro-nano devices vertically. Adv. Opt. Mater. 2022, 10, 2102102.

    Article  CAS  Google Scholar 

  109. Brites, C. D. S.; Fuertes, M. C.; Angelomé, P. C.; Martínez, E. D.; Lima, P. P.; Soler-Illia, G. J. A. A.; Carlos, L. D. Tethering luminescent thermometry and plasmonics: Light manipulation to assess real-time thermal flow in nanoarchitectures. Nano Lett. 2017, 17, 4746–4752.

    Article  CAS  Google Scholar 

  110. Bastos, A. R. N.; Brites, C. D. S.; Rojas-Gutierrez, P. A.; DeWolf, C.; Ferreira, R. A. S.; Capobianco, J. A.; Carlos, L. D. Thermal properties of lipid bilayers determined using upconversion nanothermometry. Adv. Funct. Mater. 2019, 29, 1905474.

    Article  CAS  Google Scholar 

  111. Lin, X.; Kong, M. Y.; Wu, N.; Gu, Y. Y.; Qiu, X. C.; Chen, X. Y.; Li, Z. X.; Feng, W.; Li, F. Y. Measurement of temperature distribution at the nanoscale with luminescent probes based on lanthanide nanoparticles and quantum dots. ACS Appl. Mater. Interfaces 2020, 12, 52393–52401.

    Article  CAS  Google Scholar 

  112. Zhu, X. J.; Feng, W.; Chang, J.; Tan, Y. W.; Li, J. C.; Chen, M.; Sun, Y.; Li, F. Y. Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature. Nat. Commun. 2016, 7, 10437.

    Article  CAS  Google Scholar 

  113. Zhu, X. J.; Li, J. C.; Qiu, X. C.; Liu, Y.; Feng, W.; Li, F. Y. Upconversion nanocomposite for programming combination cancer therapy by precise control of microscopic temperature. Nat. Commun. 2018, 9, 2176.

    Article  Google Scholar 

  114. Wu, N.; Sun, Y. S.; Kong, M. Y.; Lin, X.; Cao, C.; Li, Z. X.; Feng, W.; Li, F. Y. Er-based luminescent nanothermometer to explore the real-time temperature of cells under external stimuli. Small 2022, 18, 2107963.

    Article  CAS  Google Scholar 

  115. Piñol, R.; Zeler, J.; Brites, C. D. S.; Gu, Y. Y.; Téllez, P.; Neto, A. N. C.; Da Silva, T. E.; Moreno-Loshuertos, R.; Fernandez-Silva, P.; Gallego, A. I. et al. Real-time intracellular temperature imaging using lanthanide-bearing polymeric micelles. Nano Lett. 2020, 20, 6466–6472.

    Article  Google Scholar 

  116. Guo, J. J.; Zhou, B. Q.; Yang, C. X.; Dai, Q. H.; Kong, L. J. Stretchable and temperature-sensitive polymer optical fibers for wearable health monitoring. Adv. Funct. Mater. 2019, 29, 1902898.

    Article  Google Scholar 

  117. Guo, J. J.; Zhou, B. Q.; Yang, C. X.; Dai, Q. H.; Kong, L. J. Stretchable and upconversion-luminescent polymeric optical sensor for wearable multifunctional sensing. Opt. Lett. 2019, 44, 5747–5750.

    Article  CAS  Google Scholar 

  118. Ramalho, J. F. C. B.; Correia, S. F. H.; Fu, L. S.; António, L. L. F.; Brites, C. D. S.; André, P. S.; Ferreira, R. A. S.; Carlos, L. D. Luminescence thermometry on the route of the mobile-based Internet of Things (IoT): How smart QR codes make it real. Adv. Sci. 2019, 6, 1900950.

    Article  CAS  Google Scholar 

  119. Ramalho, J. F. C. B.; Dias, L. M. S.; Fu, L. S.; Botas, A. M. P.; Carlos, L. D.; Neto, A. N. C.; André, P. S.; Ferreira, R. A. S. Customized luminescent multiplexed quick-response codes as reliable temperature mobile optical sensors for eHealth and Internet of Things. Adv. Photonics Res. 2022, 3, 2100206.

    Article  Google Scholar 

  120. Marin, R.; Jaque, D. Doping lanthanide ions in colloidal semiconductor nanocrystals for brighter photoluminescence. Chem. Rev. 2021, 121, 1425–1462.

    Article  CAS  Google Scholar 

  121. Li, M. Z.; Xia, Z. G. Recent progress of zero-dimensional luminescent metal halides. Chem. Soc. Rev. 2021, 50, 2626–2662.

    Article  CAS  Google Scholar 

  122. Pei, P.; Chen, Y.; Sun, C. X.; Fan, Y.; Yang, Y. M.; Liu, X.; Lu, L. F.; Zhao, M. Y.; Zhang, H. X.; Zhao, D. Y. et al. X-ray-activated persistent luminescence nanomaterials for NIR-II imaging. Nat. Nanotechnol. 2021, 16, 1011–1018.

    Article  CAS  Google Scholar 

  123. Zhou, J. J.; Chizhik, A. I.; Chu, S.; Jin, D. Y. Single-particle spectroscopy for functional nanomaterials. Nature 2020, 579, 41–50.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 12074347, 61935009, and 12004346), the Science Foundation for Distinguished Young Scholars of Henan Province (No. 212300410019), the Project funded by China Postdoctoral Science Foundation (No. 2019M662508), and the Young Talent Support Project of Henan Province (No. 222300420322).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhifeng Shi or Guanying Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, M., Chen, X., Sun, R. et al. Lanthanide-based ratiometric luminescence nanothermometry. Nano Res. 16, 2949–2967 (2023). https://doi.org/10.1007/s12274-022-4882-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4882-7

Keywords

Navigation