Skip to main content
Log in

Highly insulating phase of Bi2O2Se thin films with high electronic performance

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Bi2O2Se is highly competitive as a candidate of next-generation high-performance semiconductors. Though dubbed as semiconductor, Bi2O2Se films exhibited high conductance, i.e., metallic behavior, due to spontaneously ionized defects. Semiconducting/insulating films are of practical importance in broad applications based on low-power, high-performance electronics, the existence of which lacks firm evidence. Here, we synthesized highly insulating films in a controlled way, which exhibit semiconducting behavior with channel resistance up to 1 TΩ. The electron chemical potential lies within the band gap, in some cases, even below the charge neutrality level, signifying the trace of hole-type semiconducting. The performance of insulating devices remains high, comparable to high-quality devices previously. Especially, the threshold voltage (Vth) is positive, contrary to common negative values reported. Calculations indicate that our synthesis conditions suppress electron donors (Se vacancies (VSe)) and promote the formation of compensating acceptors (Bi vacancies (VBi)), leading to insulating behaviors. Our work offers insights into electron dynamics of Bi2O2Se, moves one step further towards p-type transistors and provides a valuable playground for engineering ferroelectricity in high-performance semiconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu, J. X.; Yuan, H. T.; Meng, M. M.; Chen, C.; Sun, Y.; Chen, Z. Y.; Dang, W. H.; Tan, C. W.; Liu, Y. J.; Yin, J. B. et al. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nat. Nanotechnol. 2017, 12, 530–534.

    Article  CAS  Google Scholar 

  2. Khan, U.; Luo, Y. T.; Tang, L.; Teng, C. J.; Liu, J. M.; Liu, B. L.; Cheng, H. M. Controlled vapor—solid deposition of millimeter-size single crystal 2D Bi2O2Se for high-performance phototransistors. Adv. Funct. Mater. 2019, 29, 1807979.

    Article  Google Scholar 

  3. Tong, T.; Chen, Y. F.; Qin, S. C.; Li, W. S.; Zhang, J. R.; Zhu, C. H.; Zhang, C. C.; Yuan, X.; Chen, X. Q.; Nie, Z. H. et al. Sensitive and ultrabroadband phototransistor based on two-dimensional Bi2O2Se nanosheets. Adv. Funct. Mater. 2019, 29, 1905806.

    Article  CAS  Google Scholar 

  4. Fu, Q. D.; Zhu, C.; Zhao, X. X.; Wang, X. L.; Chaturvedi, A.; Zhu, C.; Wang, X. W.; Zeng, Q. S.; Zhou, J. D.; Liu, F. C. et al. Ultrasensitive 2D Bi2O2Se phototransistors on silicon substrates. Adv. Mater. 2019, 31, 1804945.

    Article  Google Scholar 

  5. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  CAS  Google Scholar 

  6. Schwierz, F. Graphene transistors. Nat. Nanotechnol. 2010, 5, 487–496.

    Article  CAS  Google Scholar 

  7. Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

    Article  CAS  Google Scholar 

  8. Desai, S. B.; Madhvapathy, S. R.; Sachid, A. B.; Llinas, J. P.; Wang, Q. X.; Ahn, G. H.; Pitner, G.; Kim, M. J.; Bokor, J.; Hu, C. M. et al. MoS2 transistors with 1-nanometer gate lengths. Science 2016, 354, 99–102.

    Article  CAS  Google Scholar 

  9. Radisavljevic, B.; Kis, A. Mobility engineering and a metal-insulator transition in monolayer MoS2. Nat. Mater. 2013, 12, 815–820.

    Article  CAS  Google Scholar 

  10. Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377.

    Article  CAS  Google Scholar 

  11. Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X. F.; Tománek, D.; Ye, P. D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS nano 2014, 8, 4033–4041.

    Article  CAS  Google Scholar 

  12. Wu, J. X.; Qiu, C. G.; Fu, H. X.; Chen, S. L.; Zhang, C. C.; Dou, Z. P.; Tan, C. W.; Tu, T.; Li, T. R.; Zhang, Y. C. et al. Low residual carrier concentration and high mobility in 2D semiconducting Bi2O2Se. Nano Lett. 2019, 19, 197–202.

    Article  CAS  Google Scholar 

  13. Li, J.; Wang, Z. X.; Wen, Y.; Chu, J. W.; Yin, L.; Cheng, R. Q.; Lei, L.; He, P.; Jiang, C.; Feng, L. P. et al. High-performance near-infrared photodetector based on ultrathin Bi2O2Se nanosheets. Adv. Funct. Mater. 2018, 28, 1706437.

    Article  Google Scholar 

  14. Liu, S. Y.; Tan, C. W.; He, D. W.; Wang, Y. S.; Peng, H. L.; Zhao, H. Optical properties and photocarrier dynamics of Bi2O2Se monolayer and nanoplates. Adv. Opt. Mater. 2020, 8, 1901567.

    Article  CAS  Google Scholar 

  15. Yang, H.; Tan, C. W.; Deng, C. Y.; Zhang, R. Y.; Zheng, X. M.; Zhang, X. Z.; Hu, Y. Z.; Guo, X. X.; Wang, G.; Jiang, T. et al. Bolometric effect in Bi2O2Se photodetectors. Small 2019, 15, 1904482.

    Article  CAS  Google Scholar 

  16. Chen, Y. F.; Ma, W. L.; Tan, C. W.; Luo, M.; Zhou, W.; Yao, N. J.; Wang, H.; Zhang, L. L.; Xu, T. F.; Tong, T. et al. Broadband Bi2O2Se photodetectors from infrared to terahertz. Adv. Funct. Mater. 2021, 31, 2009554.

    Article  CAS  Google Scholar 

  17. Zhang, Z. Y.; Li, T. R.; Wu, Y. J.; Jia, Y. J.; Tan, C. W.; Xu, X. T.; Wang, G. R.; Lv, J.; Zhang, W.; He, Y. H. et al. Truly concomitant and independently expressed short- and long-term plasticity in a Bi2O2Se-based three-terminal memristor. Adv. Mater. 2019, 31, 1805769.

    Article  Google Scholar 

  18. Xu, S. P.; Fu, H. X.; Tian, Y.; Deng, T.; Cai, J.; Wu, J. X.; Tu, T.; Li, T. R.; Tan, C. W.; Liang, Y. et al. Exploiting two-dimensional Bi2O2Se for trace oxygen detection. Angew. Chem. 2020, 132, 18094–18099.

    Article  Google Scholar 

  19. Xie, H. H.; Liu, M. Q.; You, B. H.; Luo, G. H.; Chen, Y.; Liu, B. L.; Jiang, Z. Y.; Chu, P. K.; Shao, J. D.; Yu, X. F. Biodegradable Bi2O2Se quantum dots for photoacoustic imaging-guided cancer photothermal therapy. Small 2020, 16, 1905208.

    Article  CAS  Google Scholar 

  20. Ruleova, P.; Drasar, C.; Lostak, P.; Li, C. P.; Ballikaya, S.; Uher, C. Thermoelectric properties of Bi2O2Se. Mater. Chem. Phys. 2010, 119, 299–302.

    Article  CAS  Google Scholar 

  21. Pan, L.; Liu, W. D.; Zhang, J. Y.; Shi, X. L.; Gao, H.; Liu, Q. F.; Shen, X. D.; Lu, C. H.; Wang, Y. F.; Chen, Z. G. Synergistic effect approaching record-high figure of merit in the shear exfoliated n-type Bi2O2−2xTe2xSe. Nano Energy 2020, 69, 104394.

    Article  CAS  Google Scholar 

  22. Wang, J. L.; Hu, W. H.; Lou, Z. F.; Xu, Z. K.; Yang, X. H.; Wang, T.; Lin, X. Thermoelectric properties of Bi2O2Se single crystals. Appl. Phys. Lett. 2021, 119, 081901.

    Article  CAS  Google Scholar 

  23. Wu, M. H.; Zeng, X. C. Bismuth oxychalcogenides: A new class of ferroelectric/ferroelastic materials with ultra high mobility. Nano Lett. 2017, 17, 6309–6314.

    Article  CAS  Google Scholar 

  24. Ghosh, T.; Samanta, M.; Vasdev, A.; Dolui, K.; Ghatak, J.; Das, T.; Sheet, G.; Biswas, K. Ultrathin free-standing nanosheets of Bi2O2Se: Room temperature ferroelectricity in self-assembled charged layered heterostructure. Nano Lett. 2019, 19, 5703–5709.

    Article  CAS  Google Scholar 

  25. Zhu, Z. Y.; Yao, X. P.; Zhao, S.; Lin, X.; Li, W. B. Giant modulation of the electron mobility in semiconductor Bi2O2Se via incipient ferroelectric phase transition. J. Am. Chem. Soc. 2022, 144, 4541–4549.

    Article  CAS  Google Scholar 

  26. Vrushabendrakumar, D.; Rajashekhar, H.; Riddell, S.; Kalra, A. P.; Alam, K. M.; Shankar, K. Synthesis, characterization, and visible light photocatalytic activity of solution-processed free-standing 2D Bi2O2Se nanosheets. Nanotechnology 2021, 32, 485602.

    Article  CAS  Google Scholar 

  27. Tian, X. L.; Luo, H. Y.; Wei, R. F.; Zhu, C. H.; Guo, Q. Y.; Yang, D. D.; Wang, F. Q.; Li, J. F.; Qiu, J. R. An ultrabroadband Mid-infrared pulsed optical switch employing solution-processed bismuth oxyselenide. Adv. Mater. 2018, 30, 1801021.

    Article  Google Scholar 

  28. Xu, R.; Wang, S.; Li, Y.; Chen, H. N.; Tong, T.; Cai, Y.; Meng, Y. F.; Zhang, Z. X.; Wang, X. F.; Wang, F. Q. Layered semiconductor Bi2O2Se for broadband pulse generation in the near-infrared. IEEE Photonics Technol. Lett. 2019, 31, 1056–1059.

    Article  CAS  Google Scholar 

  29. Li, T. R.; Tu, T.; Sun, Y. W.; Fu, H. X.; Yu, J.; Xing, L.; Wang, Z. A.; Wang, H. M.; Jia, R. D.; Wu, J. X. et al. A native oxide high-κ gate dielectric for two-dimensional electronics. Nat. Electron. 2020, 3, 473–478.

    Article  CAS  Google Scholar 

  30. Tu, T.; Zhang, Y. C.; Li, T. R.; Yu, J.; Liu, L. M.; Wu, J. X.; Tan, C. W.; Tang, J. L.; Liang, Y.; Zhang, C. C. et al. Uniform high-κ amorphous native oxide synthesized by oxygen plasma for top-gated transistors. Nano Lett. 2020, 20, 7469–7475.

    Article  CAS  Google Scholar 

  31. Yang, J.; Quhe, R.; Li, Q. H.; Liu, S. Q.; Xu, L. Q.; Pan, Y. Y.; Zhang, H.; Zhang, X. Y.; Li, J. Z.; Yan, J. H. et al. Sub 10 nm bilayer Bi2O2Se transistors. Adv. Electron. Mater. 2019, 5, 1800720.

    Article  Google Scholar 

  32. Tan, C. W.; Jiang, J. F.; Wang, J. Y.; Yu, M. S.; Tu, T.; Gao, X. Y.; Tang, J. C.; Zhang, C. C.; Zhang, Y. C.; Zhou, X. H. et al. Strain-free layered semiconductors for 2D transistors with on-state current density exceeding 1.3 mA·µm−1. Nano Lett 2022, 22, 3770–3776.

    Article  CAS  Google Scholar 

  33. Gonzalez, R.; Gordon, B. M.; Horowitz, M. A. Supply and threshold voltage scaling for low power CMOS. IEEE J. Solid-State Circ. 1997, 32, 1210–1216.

    Article  Google Scholar 

  34. Chhowalla, M.; Jena, D.; Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 2016, 1, 16052.

    Article  CAS  Google Scholar 

  35. Fu, H. X.; Wu, J. X.; Peng, H. L.; Yan, B. H. Self-modulation doping effect in the high-mobility layered semiconductor Bi2O2Se. Phys. Rev. B 2018, 97, 241203(R).

    Article  CAS  Google Scholar 

  36. Xu, Z. K.; Wang, J. L.; Wang, T.; Hu, W. H.; Yang, X. H.; Lin, X. Huge permittivity and premature metallicity in Bi2O2Se single crystals. Sci. China Phys. Mech. Astron. 2021, 64, 267312.

    Article  CAS  Google Scholar 

  37. Wang, J. L.; Wu, J.; Wang, T.; Xu, Z. K.; Wu, J. F.; Hu, W. H.; Ren, Z.; Liu, S.; Behnia, K.; Lin, X. T-square resistivity without umklapp scattering in dilute metallic Bi2O2Se. Nat. Commun. 2020, 11, 3846.

    Article  Google Scholar 

  38. Mott, N. F. Metal-Insulator Transitions; Taylor and Francis: London, 1990.

    Google Scholar 

  39. Lin, X.; Zhu, Z. W.; Fauqué, B.; Behnia, K. Fermi surface of the most dilute superconductor. Phys. Rev. X 2013, 3, 021002.

    CAS  Google Scholar 

  40. Collignon, C.; Lin, X.; Rischau, C. W.; Fauqué, B.; Behnia, K. Metallicity and superconductivity in doped strontium titanate. Annu. Rev. Condens. Matter Phys. 2019, 10, 25–44.

    Article  CAS  Google Scholar 

  41. Chen, C.; Wang, M. X.; Wu, J. X.; Fu, H. X.; Yang, H. F.; Tian, Z.; Tu, T.; Peng, H.; Sun, Y.; Xu, X. et al. Electronic structures and unusually robust bandgap in an ultrahigh-mobility layered oxide semiconductor, Bi2O2Se. Sci. Adv. 2018, 4, eaat8355.

    Article  Google Scholar 

  42. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  43. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  44. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  45. Kang, M.; Chai, H. J.; Jeong, H. B.; Park, C.; Jung, I. Y.; Park, E.; Çiçek, M. M.; Lee, I.; Bae, B. S.; Durgun, E. et al. Low-temperature and high-quality growth of Bi2O2Se layered semiconductors via cracking metal—organic chemical vapor deposition. ACS Nano 2021, 15, 8715–8723.

    Article  CAS  Google Scholar 

  46. Song, Y. K.; Li, Z. J.; Li, H.; Tang, S. J.; Mu, G.; Xu, L. X.; Peng, W.; Shen, D. W.; Chen, Y. L.; Xie, X. M. et al. Epitaxial growth and characterization of high quality Bi2O2Se thin films on SrTiO3 substrates by pulsed laser deposition. Nanotechnology 2020, 31, 165704.

    Article  CAS  Google Scholar 

  47. Liang, Y.; Chen, Y. J.; Sun, Y. W.; Xu, S. P.; Wu, J. X.; Tan, C. W.; Xu, X. F.; Yuan, H. T.; Yang, L. X.; Chen, Y. L. et al. Molecular beam epitaxy and electronic structure of atomically thin oxyselenide films. Adv. Mater. 2019, 31, 1901964.

    Article  Google Scholar 

  48. Li, H. L.; Xu, X. T.; Zhang, Y.; Gillen, R.; Shi, L. P.; Robertson, J. Native point defects of semiconducting layered Bi2O2Se. Sci. Rep. 2018, 8, 10920.

    Article  Google Scholar 

  49. Cheng, T.; Tan, C. W.; Zhang, S. Q.; Tu, T.; Peng, H. L.; Liu, Z. R. Raman spectra and strain effects in bismuth oxychalcogenides. J. Phys. Chem. C 2018, 122, 19970–19980.

    Article  CAS  Google Scholar 

  50. Pereira, A. L. J.; Santamaría-Pérez, D.; Ruiz-Fuertes, J.; Manjón, F. J.; Cuenca-Gotor, V. P.; Vilaplana, R.; Gomis, O.; Popescu, C.; Muñoz, A.; Rodríguez-Hernández, P. et al. Experimental and theoretical study of Bi2O2Se under compression. J. Phys. Chem. C 2018, 122, 8853–8867.

    Article  CAS  Google Scholar 

  51. Yang, F.; Wu, J.; Suwardi, A.; Zhao, Y. S.; Liang, B. Y.; Jiang, J.; Xu, J. W.; Chi, D. Z.; Hippalgaonkar, K.; Lu, J. P. et al. Gate-tunable polar optical phonon to piezoelectric scattering in few-layer Bi2O2Se for high-performance thermoelectrics. Adv. Mater. 2021, 33, 2004786.

    Article  CAS  Google Scholar 

  52. Yang, X.; Zhang, Q.; Song, Y. C.; Fan, Y. S.; He, Y. W.; Zhu, Z. H.; Bai, Z. Q.; Luo, Q.; Wang, G.; Peng, G. et al. High mobility two-dimensional bismuth oxyselenide single crystals with large grain size grown by reverse-flow chemical vapor deposition. ACS Appl. Mater. Interfaces 2021, 13, 49153–49162.

    Article  CAS  Google Scholar 

  53. Wu, J. X.; Tan, C. W.; Tan, Z. J.; Liu, Y. J.; Yin, J. B.; Dang, W. H.; Wang, M. Z.; Peng, H. L. Controlled synthesis of high-mobility atomically thin bismuth oxyselenide crystals. Nano Lett. 2017, 17, 3021–3026.

    Article  CAS  Google Scholar 

  54. Hong, C. Y.; Tao, Y.; Nie, A. M.; Zhang, M. H.; Wang, N.; Li, R. P.; Huang, J. Q.; Huang, Y.; Ren, X. M.; Cheng, Y. C. et al. Inclined ultrathin Bi2O2Se films: A building block for functional van der Waals heterostructures. ACS Nano 2020, 14, 16803–16812.

    Article  CAS  Google Scholar 

  55. Luo, P.; Wang, F. K.; Qu, J. Y.; Liu, K. L.; Hu, X. Z.; Liu, K. W.; Zhai, T. Y. Self-driven WSe2/Bi2O2Se van der Waals heterostructure photodetectors with high light on/off ratio and fast response. Adv. Funct. Mater. 2021, 31, 2008351.

    Article  CAS  Google Scholar 

  56. Zhang, C. C.; Wu, J. X.; Sun, Y. W.; Tan, C. W.; Li, T. R.; Tu, T.; Zhang, Y. C.; Liang, Y.; Zhou, X. H.; Gao, P. et al. High-mobility flexible oxyselenide thin-film transistors prepared by a solution-assisted method. J. Am. Chem. Soc. 2020, 142, 2726–2731.

    Article  CAS  Google Scholar 

  57. Meng, M. M.; Huang, S. Y.; Tan, C. W.; Wu, J. X.; Li, X. B.; Peng, H. L.; Xu, H. Q. Universal conductance fluctuations and phase-coherent transport in a semiconductor Bi2O2Se nanoplate with strong spin—orbit interaction. Nanoscale 2019, 11, 10622–10628.

    Article  CAS  Google Scholar 

  58. Yang, H.; Chen, W.; Zheng, X. M.; Yang, D. S.; Hu, Y. Z.; Zhang, X. Z.; Ye, X.; Zhang, Y.; Jiang, T.; Peng, G. et al. Near-infrared photoelectric properties of multilayer Bi2O2Se nanofilms. Nanoscale Res. Lett. 2019, 14, 371.

    Article  CAS  Google Scholar 

  59. Yin, J. B.; Tan, Z. J.; Hong, H.; Wu, J. X.; Yuan, H. T.; Liu, Y. J.; Chen, C.; Tan, C. W.; Yao, F. R.; Li, T. R. et al. Ultrafast and highly sensitive infrared photodetectors based on two-dimensional oxyselenide crystals. Nat. Commun. 2018, 9, 3311.

    Article  Google Scholar 

  60. Zhang, S. B.; Wei, S. H.; Zunger, A.; Katayama-Yoshida, H. Defect physics of the CuInSe2 chalcopyrite semiconductor. Phys. Rev. B 1998, 57, 9642–9656.

    Article  CAS  Google Scholar 

  61. Wei, Q. L.; Lin, C. Q.; Li, Y. F.; Zhang, X. Y.; Zhang, Q. Y.; Shen, Q.; Cheng, Y. C.; Huang, W. Physics of intrinsic point defects in bismuth oxychalcogenides: A first-principles investigation. J. Appl. Phys. 2018, 124, 055701.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. 11904294 and 62004172) and the foundation of Westlake Multidisciplinary Research Initiative Center (MRIC, Nos. MRIC20200402 and 20200101). We thank the support provided by C. Z., P. S., and Z. C. from Instrumentation and Service Center for Physical Sciences (ISCPS) and for Molecular Sciences (ISCMS) at Westlake University. We thank Westlake Center for Micro/Nano Fabrication for the facility support. Z. Z. and W. L. thank Chenmin Dai for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenbin Li or Xiao Lin.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Xu, Z., Zhu, Z. et al. Highly insulating phase of Bi2O2Se thin films with high electronic performance. Nano Res. 16, 3224–3230 (2023). https://doi.org/10.1007/s12274-022-5046-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5046-3

Keywords

Navigation