Skip to main content
Log in

Heterointerface engineering in hierarchical assembly of the Co/Co(OH)2@carbon nanosheets composites for wideband microwave absorption

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Heterogeneous interface engineering strategy is an effective method to optimize electromagnetic functional materials. However, the mechanism of heterogeneous interfaces on microwave absorption is still unclear. In this study, abundant heterointerfaces were customized in hierarchical structures via a collaborative strategy of lyophilization and hard templates. The impressive electromagnetic heterostructures and strong interfacial polarization were realized on the zero-dimensional (0D) hexagonal close-packed (hcp)-face-centered cubic (fcc) Co/two-dimensional (2D) Co(OH)2 nanosheets@three-dimensional (3D) porous carbon nanosheets (Co/Co(OH)2@PCN). By controlling the carbonization temperature, the electromagnetic parameters were further adjusted to broaden the effective absorption bandwidth (EAB). Accordingly, the EAB of these absorbers were almost greater than 6 GHz (covering the entire Ku-band) in the thickness range of 2.0–2.2 mm except the sample S-1.0-800. As far as to the S-0.8-700 achieved an EAB up to 7.1 GHz at 2.2 mm and the minimum reflection loss (RLmin) value was −25.8 dB. Moreover, in the far-field condition, the radar cross section (RCS) of S-0.8-700 can be reduced to 19.6 dB·m2. We believe that this work will stimulate interest in interface engineering and provide a direction for achieving efficient absorbing materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xiao, J. X.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; Xie, R.; Zhong, W. Defect and interface engineering in core@shell structure hollow carbon@MoS2 nanocomposites for boosted microwave absorption performance. Nano Res. 2022, 15, 7778–7787.

    Article  CAS  Google Scholar 

  2. Su, Z.; Zhang, W. Y.; Lu, J. W.; Tian, L. Y.; Yi, S.; Zhang, Y. Y.; Zhou, S. S.; Niu, B.; Long, D. H. Oxygen-vacancy-rich Fe3O4/carbon nanosheets enabling high-attenuation and broadband microwave absorption through the integration of interfacial polarization and charge-separation polarization. J. Mater. Chem. A 2022, 10, 8479–8490.

    Article  CAS  Google Scholar 

  3. Zhao, Y.; Hao, L. L.; Zhang, X. D.; Tan, S. J.; Li, H. H.; Zheng, J.; Ji, G. B. A novel strategy in electromagnetic wave absorbing and shielding materials design: Multi-responsive field effect. Small Sci. 2022, 2, 2100077.

    Article  CAS  Google Scholar 

  4. Luo, J. H.; Feng, M. N.; Dai, Z. Y.; Jiang, C. Y.; Yao, W.; Zhai, N. X. MoS2 wrapped MOF-derived N-doped carbon nanocomposite with wideband electromagnetic wave absorption. Nano Res. 2022, 15, 5781–5789.

    Article  CAS  Google Scholar 

  5. Guan, X. M.; Yang, Z. H.; Zhou, M.; Yang, L.; Peymanfar, R.; Aslibeiki, B.; Ji, G. B. 2D MXene nanomaterials: Synthesis, mechanism, and multifunctional applications in microwave absorption. Small Str. 2022, 3, 2200102.

    Article  CAS  Google Scholar 

  6. Sun, G. B.; Wu, H.; Liao, Q. L.; Zhang, Y. Enhanced microwave absorption performance of highly dispersed CoNi nanostructures arrayed on graphene. Nano Res. 2018, 11, 2689–2704.

    Article  CAS  Google Scholar 

  7. Zhang, C. M.; Chen, Y. J.; Li, H.; Tian, R.; Liu, H. Z. Facile fabrication of three-dimensional lightweight RGO/PPy nanotube/Fe3O4 aerogel with excellent electromagnetic wave absorption properties. ACS Omega 2018, 3, 5735–5743.

    Article  CAS  Google Scholar 

  8. Li, Y.; Meng, F. B.; Mei, Y.; Wang, H. G.; Guo, Y. F.; Wang, Y.; Peng, F. X.; Huang, F.; Zhou, Z. W. Electrospun generation of Ti3C2Tx MXene@graphene oxide hybrid aerogel microspheres for tunable high-performance microwave absorption. Chem. Eng. J. 2020, 391, 123512.

    Article  CAS  Google Scholar 

  9. Yang, Y. N.; Xia, L.; Zhang, T.; Shi, B.; Huang, L. N.; Zhong, B.; Zhang, X. Y.; Wang, H. T.; Zhang, J.; Wen, G. W. Fe3O4@LAS/RGO composites with a multiple transmission-absorption mechanism and enhanced electromagnetic wave absorption performance. Chem. Eng. J. 2018, 352, 510–518.

    Article  CAS  Google Scholar 

  10. Kegl, T.; Ban, I.; Lobnik, A.; Košak, A. Synthesis and characterization of novel γ-Fe2O3-NH4OH@SiO2(APTMS) nanoparticles for dysprosium adsorption. J. Hazard. Mater. 2019, 378, 120764.

    Article  CAS  Google Scholar 

  11. Niu, H. H.; Tu, X. Y.; Zhang, S.; Li, Y. Y.; Wang, H. L.; Shao, G.; Zhang, R.; Li, H. X.; Zhao, B.; Fan, B. B. Engineered core—shell SiO2@Ti3C2Tx composites: Towards ultra-thin electromagnetic wave absorption materials. Chem. Eng. J. 2022, 446, 137260.

    Article  CAS  Google Scholar 

  12. Li, C.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; Xie, R.; Zhong, W. Magnetic-dielectric synergy and interfacial engineering to design yolk—shell structured CoNi@void@C and CoNi@void@C@MoS2 nanocomposites with tunable and strong wideband microwave absorption. Nano Res. 2022, 15, 6761–6771.

    Article  CAS  Google Scholar 

  13. Han, Y. X.; He, M. K.; Hu, J. W.; Liu, P. B.; Liu, Z. W.; Ma, Z. L.; Ju, W. B.; Gu, J. W. Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band. Nano Res., in press, https://doi.org/10.1007/s12274-022-5111-y.

  14. Xu, J. M.; Xia, L.; Luo, J. H.; Lu, S. R.; Huang, X. X.; Zhong, B.; Zhang, T.; Wen, G. W.; Wu, X.; Xiong, L. et al. High-performance electromagnetic wave absorbing CNT/SiCf composites: Synthesis, tuning, and mechanism. ACS Appl. Mater. Interfaces 2020, 12, 20775–20784.

    Article  CAS  Google Scholar 

  15. Wu, Y.; Zhao, Y.; Zhou, M.; Tan, S. J.; Peymanfar, R.; Aslibeiki, B.; Ji, G. B. Ultrabroad microwave absorption ability and infrared stealth property of nano-micro CuS@rGO lightweight aerogels. Nano-Micro Lett. 2022, 14, 171.

    Article  Google Scholar 

  16. Liang, L. L.; Gu, W. H.; Wu, Y.; Zhang, B. S.; Wang, G. H.; Yang, Y.; Ji, G. B. Heterointerface engineering in electromagnetic absorbers: New insights and opportunities. Adv. Mater. 2022, 34, 2106195.

    Article  CAS  Google Scholar 

  17. Wu, Y. H.; Peng, K. S.; Man, Z. M.; Zang, R.; Li, P. X.; Liu, S. S.; Wang, S. Y.; Liu, P. Y.; Li, P.; Cui, Y. H. A hierarchically three-dimensional CoNi/N-doped porous carbon nanosheets with high performance of electromagnetic wave absorption. Carbon 2022, 188, 503–512.

    Article  CAS  Google Scholar 

  18. Gu, W. H.; Ong, S. J. H.; Shen, Y. H.; Guo, W. Y.; Fang, Y. T.; Ji, G. B.; Xu, Z. J. A lightweight, elastic, and thermally insulating stealth foam with high infrared-radar compatibility. Adv. Sci., in press, https://doi.org/10.1002/advs.202204165.

  19. Zhang, Q. R.; Teng, J.; Zou, G. D.; Peng, Q. M.; Du, Q.; Jiao, T. F.; Xiang, J. Y. Efficient phosphate sequestration for water purification by unique sandwich-like MXene/magnetic iron oxide nanocomposites. Nanoscale 2016, 8, 7085–7093.

    Article  CAS  Google Scholar 

  20. Qu, B.; Zhu, C. L.; Li, C. Y.; Zhang, X. T.; Chen, Y. J. Coupling hollow Fe3O4-Fe nanoparticles with graphene sheets for high-performance electromagnetic wave absorbing material. ACS Appl. Mater. Interfaces 2016, 8, 3730–3735.

    Article  CAS  Google Scholar 

  21. Qiang, R.; Du, Y. C.; Zhao, H. T.; Wang, Y.; Tian, C. H.; Li, Z. G.; Han, X. J.; Xu, P. Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption. J. Mater. Chem. A 2015, 3, 13426–13434.

    Article  CAS  Google Scholar 

  22. Lizárraga, R.; Pan, F.; Bergqvist, L.; Holmström, E.; Gercsi, Z.; Vitos, L. First principles theory of the hcp-fcc phase transition in cobalt. Sci. Rep. 2017, 7, 3778.

    Article  Google Scholar 

  23. Ma, X. T.; Nolan, A. M.; Zhang, S.; Bai, J. M.; Xu, W. Q.; Wu, L. J.; Mo, Y. F.; Chen, H. L. Guiding synthesis of polymorphs of materials using nanometric phase diagrams. J. Am. Chem. Soc. 2018, 140, 17290–17296.

    Article  CAS  Google Scholar 

  24. Wang, Y.; Du, Y. C.; Guo, D.; Qiang, R.; Tian, C. H.; Xu, P.; Han, X. J. Precursor-directed synthesis of porous cobalt assemblies with tunable close-packed hexagonal and face-centered cubic phases for the effective enhancement in microwave absorption. J. Mater. Sci. 2017, 52, 4399–4411.

    Article  CAS  Google Scholar 

  25. Zhang, Y. L.; Kong, J.; Gu, J. W. New generation electromagnetic materials: Harvesting instead of dissipation solo. Sci. Bull. 2022, 67, 1413–1415.

    Article  CAS  Google Scholar 

  26. Zhao, H. Q.; Cheng, Y.; Liu, W.; Yang, L. J.; Zhang, B. S.; Wang, L. P.; Ji, G. B.; Xu, Z. J. Biomass-derived porous carbon-based nanostructures for microwave absorption. Nano-Micro Lett. 2019, 11, 24.

    Article  CAS  Google Scholar 

  27. Song, Y.; Yin, F. X.; Zhang, C. W.; Guo, W. B.; Han, L. Y.; Yuan, Y. Three-dimensional ordered mesoporous carbon spheres modified with ultrafine zinc oxide nanoparticles for enhanced microwave absorption properties. Nano-Micro Lett. 2021, 13, 76.

    Article  Google Scholar 

  28. Chen, X. T.; Zhou, M.; Zhao, Y.; Gu, W. H.; Wu, Y.; Tang, S. L.; Ji, G. B. Morphology control of eco-friendly chitosan-derived carbon aerogels for efficient microwave absorption at thin thickness and thermal stealth. Green Chem. 2022, 24, 5280–5290.

    Article  CAS  Google Scholar 

  29. Tao, J. Q.; Jiao, Z. B.; Xu, L. L.; Yi, P. S.; Yao, Z. J.; Yang, F.; Zhou, C. Y.; Chen, P.; Zhou, J. T.; Li, Z. Construction of MOF-derived Co/C shell on carbon fiber surface to enhance multi-polarization effect towards efficient broadband electromagnetic wave absorption. Carbon 2021, 184, 571–582.

    Article  CAS  Google Scholar 

  30. Wang, F. Y.; Xu, P.; Shi, N.; Cui, L. R.; Wang, Y. H.; Liu, D. W.; Zhao, H. H.; Han, X. J.; Du, Y. C. Polymer-bubbling for one-step synthesis of three-dimensional cobalt/carbon foams against electromagnetic pollution. J. Mater. Sci. Technol. 2021, 93, 7–16.

    Article  CAS  Google Scholar 

  31. Xu, C. Y.; Liu, P. B.; Wu, Z. C.; Zhang, H. B.; Zhang, R. X.; Zhang, C.; Wang, L.; Wang, L. Y.; Yang, B. T.; Yang, Z. Q. et al. Customizing heterointerfaces in multilevel hollow architecture constructed by magnetic spindle arrays using the polymerizing-etching strategy for boosting microwave absorption. Adv. Sci. 2022, 9, 2200804.

    Article  CAS  Google Scholar 

  32. Huan, X. H.; Wang, H. T.; Deng, W. C.; Yan, J. Q.; Xu, K.; Geng, H. B.; Guo, X. D.; Jia, X. L.; Zhou, J. S.; Yang, X. P. Integrating multi-heterointerfaces in a 1D@2D@1D hierarchical structure via autocatalytic pyrolysis for ultra-efficient microwave absorption performance. Small 2022, 18, 2105411.

    Article  CAS  Google Scholar 

  33. Yang, J. J.; Wang, J. Q.; Li, H. Q.; Wu, Z.; Xing, Y. Q.; Chen, Y. F.; Liu, L. MoS2/MXene aerogel with conformal heterogeneous interfaces tailored by atomic layer deposition for tunable microwave absorption. Adv. Sci. 2022, 9, 2101988.

    Article  CAS  Google Scholar 

  34. Zhou, S. H.; Huang, Y.; Yan, J.; Han, X. P.; Chen, X. F. Fabrication of ternary CoNi@SiO2@RGO composites with enhanced electromagnetic (EM) wave absorption performances. J. Mater. Sci.: Mater. Electron. 2017, 28, 18558–18567.

    CAS  Google Scholar 

  35. Song, L. M.; Zhang, F.; Chen, Y. Q.; Guan, L.; Zhu, Y. Q.; Chen, M.; Wang, H. L.; Putra, B. R.; Zhang, R.; Fan, B. B. Multifunctional SiC@SiO2 nanofiber aerogel with ultrabroadband electromagnetic wave absorption. Nano-Micro Lett. 2022, 14, 152.

    Article  CAS  Google Scholar 

  36. Feng, J. T.; Hou, Y. H.; Wang, Y. C.; Li, L. C. Synthesis of hierarchical ZnFe2O4@SiO2@RGO core—shell microspheres for enhanced electromagnetic wave absorption. ACS Appl. Mater. Interfaces 2017, 9, 14103–14111.

    Article  CAS  Google Scholar 

  37. Wang, Z.; Cheng, Z.; Xie, L.; Hou, X. L.; Fang, C. Q. Flexible and lightweight Ti3C2Tx MXene/Fe3O4@PANI composite films for high-performance electromagnetic interference shielding. Ceram. Int. 2021, 47, 5747–5757.

    Article  CAS  Google Scholar 

  38. Cui, Y. H.; Yang, K.; Wang, J. Q.; Shah, T.; Zhang, Q. Y.; Zhang, B. L. Preparation of pleated RGO/MXene/Fe3O4 microsphere and its absorption properties for electromagnetic wave. Carbon 2021, 172, 1–14.

    Article  CAS  Google Scholar 

  39. Liu, Q. H.; Cao, Q.; Bi, H.; Liang, C. Y.; Yuan, K. P.; She, W.; Yang, Y. J.; Che, R. C. CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 2016, 28, 486–490.

    Article  CAS  Google Scholar 

  40. Wang, L.; Huang, Y.; Sun, X.; Huang, H. J.; Liu, P. B.; Zong, M.; Wang, Y. Synthesis and microwave absorption enhancement of graphene@Fe3O4@SiO2@NiO nanosheet hierarchical structures. Nanoscale 2014, 6, 3157–3164.

    Article  CAS  Google Scholar 

  41. Wang, F. Y.; Liu, Y. L.; Zhao, H. H.; Cui, L. R.; Gai, L. X.; Han, X. J.; Du, Y. C. Controllable seeding of nitrogen-doped carbon nanotubes on three-dimensional Co/C foam for enhanced dielectric loss and microwave absorption characteristics. Chem. Eng. J. 2022, 450, 138160.

    Article  CAS  Google Scholar 

  42. Ma, W. J.; He, P.; Xu, J.; Liu, X. Y.; Lin, S. L.; Cui, Z. K.; Zuo, P. Y.; Zhuang, Q. X. Self-assembly magnetized 3D hierarchical graphite carbon-based heterogeneous yolk—shell nanoboxes with enhanced microwave absorption. J. Mater. Chem. A 2022, 10, 11405–11413.

    Article  CAS  Google Scholar 

  43. Shen, Z. J.; Yang, H. L.; Xiong, Z. Q.; Xie, Y.; Liu, C. B. Hollow core—shell CoNi@C and CoNi@NC composites as high-performance microwave absorbers. J. Alloys Compd. 2021, 871, 159574.

    Article  CAS  Google Scholar 

  44. Wang, Y. L.; Yang, S. H.; Wang, H. Y.; Wang, G. S.; Sun, X. B.; Yin, P. G. Hollow porous CoNi/C composite nanomaterials derived from MOFs for efficient and lightweight electromagnetic wave absorber. Carbon 2020, 167, 485–494.

    Article  CAS  Google Scholar 

  45. Gao, S.; Yang, S. H.; Wang, H. Y.; Wang, G. S.; Yin, P. G.; Zhang, X. J. CoNi alloy with tunable magnetism encapsulated by N-doped carbon nanosheets toward high-performance microwave attenuation. Compos. Part B: Eng. 2021, 215, 108781.

    Article  CAS  Google Scholar 

  46. Gu, W. H.; Tan, J. W.; Chen, J. B.; Zhang, Z.; Zhao, Y.; Yu, J. W.; Ji, G. B. Multifunctional bulk hybrid foam for infrared stealth, thermal insulation, and microwave absorption. ACS Appl. Mater. Interfaces 2020, 12, 28727–28737.

    Article  CAS  Google Scholar 

  47. Ding, J. J.; Wang, L.; Zhao, Y. H.; Xing, L. S.; Yu, X. F.; Chen, G. Y.; Zhang, J.; Che, R. C. Boosted interfacial polarization from multishell TiO2@Fe3O4@PPy heterojunction for enhanced microwave absorption. Small 2019, 15, 1902885.

    Article  Google Scholar 

  48. Wang, Y.; Gao, X.; Fu, Y. Q.; Wu, X. M.; Wang, Q. G.; Zhang, W. Z.; Luo, C. Y. Enhanced microwave absorption performances of polyaniline/graphene aerogel by covalent bonding. Compos. Part B: Eng. 2019, 169, 221–228.

    Article  CAS  Google Scholar 

  49. Gu, W. H.; Zheng, J.; Liang, X. H.; Cui, X. Q.; Chen, J. B.; Zhang, Z.; Ji, G. B. Excellent lightweight carbon-based microwave absorbers derived from metal-organic frameworks with tunable electromagnetic properties. Inorg. Chem. Front. 2020, 7, 1667–1675.

    Article  CAS  Google Scholar 

  50. Guan, X. M.; Yang, Z. H.; Zhu, Y. T.; Yang, L. J.; Zhou, M.; Wu, Y.; Yang, L.; Deng, T. W.; Ji, G. B. The controllable porous structure and S-doping of hollow carbon sphere synergistically act on the microwave attenuation. Carbon 2022, 188, 1–11.

    Article  CAS  Google Scholar 

  51. Ma, G. S.; Xia, L.; Yang, H.; Wang, X. Y.; Zhang, T.; Huang, X. X.; Xiong, L.; Qin, C. L.; Wen, G. W. Multifunctional lithium aluminosilicate/CNT composite for gas filtration and electromagnetic wave absorption. Chem. Eng. J. 2021, 418, 129429.

    Article  CAS  Google Scholar 

  52. Lu, S. R.; Xia, L.; Xu, J. M.; Ding, C. H.; Li, T. T.; Yang, H.; Zhong, B.; Zhang, T.; Huang, L. N.; Xiong, L. et al. Permittivity-regulating strategy enabling superior electromagnetic wave absorption of lithium aluminum silicate/rGO nanocomposites. ACS Appl. Mater. Interfaces 2019, 11, 18626–18636.

    Article  CAS  Google Scholar 

  53. Zhang, J. J.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; Xie, R.; Zhong, W. Microstructure optimization of core@shell structured MSe2/FeSe2@MoSe2 (M = Co, Ni) flower-like multicomponent nanocomposites towards high-efficiency microwave absorption. J. Mater. Sci. Technol. 2022, 128, 59–70.

    Article  Google Scholar 

  54. Mu, C. P.; Du, X.; Nie, A. M.; Wang, B. C.; Wen, F. S.; Xiang, J. Y.; Zhai, K.; Liu, Z. Y. Microwave absorption properties of heterostructure composites of two dimensional layered magnetic materials and graphene nanosheets. Appl. Phys. Lett. 2019, 115, 043103.

    Article  Google Scholar 

  55. Xu, W.; Wang, G. S.; Yin, P. G. Designed fabrication of reduced graphene oxides/Ni hybrids for effective electromagnetic absorption and shielding. Carbon 2018, 139, 759–767.

    Article  CAS  Google Scholar 

  56. Meng, F. B.; Wei, W.; Chen, X. N.; Xu, X. L.; Jiang, M.; Jun, L.; Wang, Y.; Zhou, Z. W. Design of porous C@Fe3O4 hybrid nanotubes with excellent microwave absorption. Phys. Chem. Chem. Phys. 2016, 18, 2510–2516.

    Article  CAS  Google Scholar 

  57. Mu, Z. G.; Wei, G. K.; Zhang, H.; Gao, L.; Zhao, Y.; Tang, S. L.; Ji, G. B. The dielectric behavior and efficient microwave absorption of doped nanoscale LaMnO3 at elevated temperature. Nano Res. 2022, 15, 7731–7741.

    Article  CAS  Google Scholar 

  58. Song, C. Q.; Yin, X. W.; Han, M. K.; Li, X. L.; Hou, Z. X.; Zhang, L. T.; Cheng, L. F. Three-dimensional reduced graphene oxide foam modified with ZnO nanowires for enhanced microwave absorption properties. Carbon 2017, 116, 50–58.

    Article  CAS  Google Scholar 

  59. Xiao, S. S.; Mei, H.; Han, D. Y.; Dassios, K. G.; Cheng, L. F. Ultralight lamellar amorphous carbon foam nanostructured by SiC nanowires for tunable electromagnetic wave absorption. Carbon 2017, 122, 718–725.

    Article  CAS  Google Scholar 

  60. Zhang, Y.; Huang, Y.; Chen, H. H.; Huang, Z. Y.; Yang, Y.; Xiao, P. S.; Zhou, Y.; Chen, Y. S. Composition and structure control of ultralight graphene foam for high-performance microwave absorption. Carbon 2016, 105, 438–447.

    Article  CAS  Google Scholar 

  61. Chen, X. T.; Wang, Z. D.; Zhou, M.; Zhao, Y.; Tang, S. L.; Ji, G. B. Multilevel structure carbon aerogels with 99.999% electromagnetic wave absorptivity at 1.8 mm and efficient thermal stealth. Chem. Eng. J. 2023, 452, 139110.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51971111 and 52273247) and the Fund of Prospective Layout of Scientific Research for NUAA (Nanjing University of Aeronautics and Astronautics) (No. ILA220461A22).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Li or Guangbin Ji.

Electronic Supplementary Material

12274_2022_5263_MOESM1_ESM.pdf

Heterointerface engineering in hierarchical assembly of the Co/Co(OH)2@carbon nanosheets composites for wideband microwave absorption

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Wang, G., Yuan, X. et al. Heterointerface engineering in hierarchical assembly of the Co/Co(OH)2@carbon nanosheets composites for wideband microwave absorption. Nano Res. 16, 2611–2621 (2023). https://doi.org/10.1007/s12274-022-5263-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5263-9

Keywords

Navigation