Skip to main content
Log in

Pseudo-break imaging of carbon nanotubes for determining elastic bending energies

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

One-dimensional (1D) nanomaterials easily bend due to perturbations from their surroundings or their own behaviors. This phenomenon not only impacts the performances of various devices but has also been employed to develop a variety of new functional devices, in which the bending energies of the nanomaterials determine the device performances. However, measuring the energies of such nanomaterials is extremely difficult. Herein, pseudo-break imaging of 1D nanomaterials has been proposed and realized on individual carbon nanotubes (CNTs), in which a CNT appears to break and has a fracture but is actually intact. This imaging approach provides the values of the bending energies of the CNTs with an accuracy of 1–50 eV. Furthermore, this imaging approach can manipulate the bending shapes and energies of CNTs. This work presents a protocol for bending analysis and manipulation, which are vital to fundamental and applied studies of 1D nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bai, Y. X.; Yue, H. J.; Wang, J.; Shen, B. Y.; Sun, S.; Wang, S. J.; Wang, H. D.; Li, X. D.; Xu, Z. P.; Zhang, R. F.; Wei, F. Superdurable ultralong carbon nanotubes. Science 2020, 369, 1104–1106.

    CAS  Google Scholar 

  2. Shyu, T. C.; Damasceno, P. F.; Dodd, P. M.; Lamoureux, A.; Xu, L. Z.; Shlian, M.; Shtein, M.; Glotzer, S. C.; Kotov, N. A. A kirigami approach to engineering elasticity in nanocomposites through patterned defects. Nat. Mater. 2015, 14, 785–789.

    CAS  Google Scholar 

  3. Hao, D. D.; Zhang, J. Y.; Li, L.; Yang, B.; Guo, P.; Zhang, S. Q.; Huang, J. Air-stable synaptic devices based on bismuth triiodide and carbon nanotubes. Nano Res. 2022, 15, 5435–5442.

    CAS  Google Scholar 

  4. Ilatovskii, D. A.; Gilshtein, E. P.; Glukhova, O. E.; Nasibulin, A. G. Transparent conducting films based on carbon nanotubes: Rational design toward the theoretical limit. Adv. Sci. 2022, 9, 2201673.

    CAS  Google Scholar 

  5. Hou, Y. Q.; Wang, M.; Chen, X. Y.; Hou, X. Continuous water-water hydrogen bonding network across the rim of carbon nanotubes facilitating water transport for desalination. Nano Res. 2021, 14, 2171–2178.

    CAS  Google Scholar 

  6. Wang, H. C.; Zhou, R. C.; Li, D. H.; Zhang, L. R.; Ren, G. Z.; Wang, L.; Liu, J. H.; Wang, D. Y.; Tang, Z. H.; Lu, G. et al. High-performance foam-shaped strain sensor based on carbon nanotubes and Ti3C2Tx MXene for the monitoring of human activities. ACS Nano 2021, 15, 9690–9700.

    CAS  Google Scholar 

  7. De Volder, M.; Park, S.; Tawfick, S.; Hart, A. J. Strain-engineered manufacturing of freeform carbon nanotube microstructures. Nat. Commun. 2014, 5, 4512.

    CAS  Google Scholar 

  8. Zhang, S.; Pang, J. B.; Li, Y. F.; Yang, F.; Gemming, T.; Wang, K.; Wang, X.; Peng, S. G.; Liu, X. Y.; Chang, B. et al. Emerging Internet of Things driven carbon nanotubes-based devices. Nano Res. 2022, 15, 4613–4637.

    CAS  Google Scholar 

  9. Eichler, A.; Moser, J.; Dykman, M. I.; Bachtold, A. Symmetry breaking in a mechanical resonator made from a carbon nanotube. Nat. Commun. 2013, 4, 2843.

    CAS  Google Scholar 

  10. Zhang, R. F.; Zhang, Y. Y.; Zhang, Q.; Xie, H. H.; Wang, H. D.; Nie, J. Q.; Wen, Q.; Wei, F. Optical visualization of individual ultralong carbon nanotubes by chemical vapour deposition of titanium dioxide nanoparticles. Nat. Commun. 2013, 4, 1727.

    Google Scholar 

  11. Meng, G.; Jin, M. M.; Wei, T. R.; Liu, Q.; Zhang, S. S.; Peng, X. Y.; Luo, J.; Liu, X. J. MoC nanocrystals confined in N-doped carbon nanosheets toward highly selective electrocatalytic nitric oxide reduction to ammonia. Nano Res. 2022, 15, 8890–8896.

    CAS  Google Scholar 

  12. Zhang, R. F.; Ning, Z. Y.; Zhang, Y. Y.; Zheng, Q. S.; Chen, Q.; Xie, H. H.; Zhang, Q.; Qian, W. Z.; Wei, F. Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions. Nat. Nanotechnol. 2013, 8, 912–916.

    CAS  Google Scholar 

  13. Zhao, B.; Dang, W. Q.; Yang, X. D.; Li, J.; Bao, H. H.; Wang, K.; Luo, J.; Zhang, Z. W.; Li, B.; Xie, H. P. et al. van der Waals epitaxial growth of ultrathin metallic NiSe nanosheets on WSe2 as high performance contacts for WSe2 transistors. Nano Res. 2019, 12, 1683–1689.

    CAS  Google Scholar 

  14. Xu, J.; Lai, S. H.; Qi, D. F.; Hu, M.; Peng, X. Y.; Liu, Y. F.; Liu, W.; Hu, G. Z.; Xu, H.; Li, F. et al. Atomic Fe-Zn dual-metal sites for high-efficiency pH-universal oxygen reduction catalysis. Nano Res. 2021, 14, 1374–1381.

    CAS  Google Scholar 

  15. Wang, H. M.; Wang, H. M.; Zhang, S. C.; Zhang, Y.; Xia, K. L.; Yin, Z.; Zhang, M. C.; Liang, X. P.; Lu, H. J.; Li, S. et al. Carbothermal shock enabled facile and fast growth of carbon nanotubes in a second. Nano Res. 2022, 15, 2576–2581.

    CAS  Google Scholar 

  16. Zhang, R. F.; Wen, Q.; Qian, W. Z.; Su, D. S.; Zhang, Q.; Wei, F. Superstrong ultralong carbon nanotubes for mechanical energy storage. Adv. Mater. 2011, 23, 3387–3391.

    CAS  Google Scholar 

  17. Luo, J.; Ouyang, W. G.; Li, X. P.; Jin, Z.; Yang, L. J.; Chen, C. Q.; Zhang, J.; Li, Y.; Warner, J. H.; Peng, L. M. et al. Pointwise plucking of suspended carbon nanotubes. Nano Lett. 2012, 12, 3663–3667.

    CAS  Google Scholar 

  18. Laird, E. A.; Pei, F.; Kouwenhoven, L. P. A valley-spin qubit in a carbon nanotube. Nat. Nanotechnol. 2013, 8, 565–568.

    CAS  Google Scholar 

  19. Patil, J. J.; Chae, W. H.; Trebach, A.; Carter, K. J.; Lee, E.; Sannicolo, T.; Grossman, J. C. Failing forward: Stability of transparent electrodes based on metal nanowire networks. Adv. Mater. 2021, 33, 2004356.

    CAS  Google Scholar 

  20. Chae, S. H.; Yu, W. J.; Bae, J. J.; Duong, D. L.; Perello, D.; Jeong, H. Y.; Ta, Q. H.; Ly, T. H.; Vu, Q. A.; Yun, M. et al. Transferred wrinkled Al2O3 for highly stretchable and transparent graphene-carbon nanotube transistors. Nat. Mater. 2013, 12, 403–409.

    CAS  Google Scholar 

  21. Takahashi, T.; Yu, Z. B.; Chen, K.; Kiriya, D.; Wang, C.; Takei, K.; Shiraki, H.; Chen, T.; Ma, B. W.; Javey, A. Carbon nanotube active-matrix backplanes for mechanically flexible visible light and X-ray imagers. Nano Lett. 2013, 13, 5425–5430.

    CAS  Google Scholar 

  22. Rogers, J. A.; Someya, T.; Huang, Y. G. Materials and mechanics for stretchable electronics. Science 2010, 327, 1603–1607.

    CAS  Google Scholar 

  23. Huang, Z. G.; Kang, S. K.; Banno, M.; Yamaguchi, T.; Lee, D.; Seok, C.; Yashima, E.; Lee, M. Pulsating tubules from noncovalent macrocycles. Science 2012, 337, 1521–1526.

    CAS  Google Scholar 

  24. Jang, Y.; Kim, S. M.; Spinks, G. M.; Kim, S. J. Carbon nanotube yarn for fiber-shaped electrical sensors, actuators, and energy storage for smart systems. Adv. Mater. 2020, 32, 1902670.

    CAS  Google Scholar 

  25. Oh, J.; Yang, J. C.; Kim, J. O.; Park, H.; Kwon, S. Y.; Lee, S.; Sim, J. Y.; Oh, H. W.; Kim, J.; Park, S. Pressure insensitive strain sensor with facile solution-based process for tactile sensing applications. ACS Nano 2018, 12, 7546–7553.

    CAS  Google Scholar 

  26. Pan, C. F.; Dong, L.; Zhu, G.; Niu, S. M.; Yu, R. M.; Yang, Q.; Liu, Y.; Wang, Z. L. High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array. Nat. Photonics 2013, 7, 752–758.

    CAS  Google Scholar 

  27. Fakhri, N.; MacKintosh, F. C.; Lounis, B.; Cognet, L.; Pasquali, M. Brownian motion of stiff filaments in a crowded environment. Science 2010, 330, 1804–1807.

    CAS  Google Scholar 

  28. Zhu, S.; Ni, J. F.; Li, Y. Carbon nanotube-based electrodes for flexible supercapacitors. Nano Res. 2020, 13, 1825–1841.

    CAS  Google Scholar 

  29. Yuan, H.; Wang, G.; Zhao, Y. X.; Liu, Y.; Wu, Y.; Zhang, Y. G. A stretchable, asymmetric, coaxial fiber-shaped supercapacitor for wearable electronics. Nano Res. 2020, 13, 1686–1692.

    Google Scholar 

  30. Xu, Y. Y.; Deng, P. L.; Chen, G. D.; Chen, J. X.; Yan, Y.; Qi, K.; Liu, H. F.; Xia, B. Y. 2D nitrogen-doped carbon nanotubes/graphene hybrid as bifunctional oxygen electrocatalyst for long-life rechargeable Zn-air batteries. Adv. Funct. Mater. 2020, 30, 1906081.

    CAS  Google Scholar 

  31. Guo, W. L.; Si, W. P.; Zhang, T.; Han, Y. H.; Wang, L.; Zhou, Z. Y.; Lu, P. Y.; Hou, F.; Liang, J. Ultrathin NixCoy-silicate nanosheets natively anchored on CNTs films for flexible lithium ion batteries. J. Energy Chem. 2021, 54, 746–753.

    CAS  Google Scholar 

  32. Zhang, C. Y.; Zhang, Q.; Zhang, D.; Wang, M. Y.; Bo, Y. W.; Fan, X. Q.; Li, F. C.; Liang, J. J.; Huang, Y.; Ma, R. J. et al. Highly stretchable carbon nanotubes/polymer thermoelectric fibers. Nano Lett. 2021, 21, 1047–1055.

    CAS  Google Scholar 

  33. Dai, S.; Zhao, J.; He, M. R.; Wang, X. G.; Wan, J. C.; Shan, Z. W.; Zhu, J. Elastic properties of GaN nanowires: Revealing the influence of planar defects on Young’s modulus at nanoscale. Nano Lett. 2015, 15, 8–15.

    CAS  Google Scholar 

  34. Dai, S.; Zhao, J.; Xie, L.; Cai, Y.; Wang, N.; Zhu, J. Electron-beam-induced elastic-plastic transition in Si nanowires. Nano Lett. 2012, 12, 2379–2385.

    CAS  Google Scholar 

  35. Koch, M.; Ample, F.; Joachim, C.; Grill, L. Voltage-dependent conductance of a single graphene nanoribbon. Nat. Nanotechnol. 2012, 7, 713–717.

    CAS  Google Scholar 

  36. Zhang, L. C.; Liang, J.; Yue, L. C.; Xu, Z. Q.; Dong, K.; Liu, Q.; Luo, Y. L.; Li, T. S.; Cheng, X. H.; Cui, G. W. et al. N-doped carbon nanotubes supported CoSe2 nanoparticles: A highly efficient and stable catalyst for H2O2 electrosynthesis in acidic media. Nano Res. 2022, 15, 304–309.

    CAS  Google Scholar 

  37. Xu, X. T.; Wan, X. Z.; Li, H. N.; Zhang, Y. K.; He, W.; Wang, S. L.; Wang, M.; Hou, X.; Wang, S. T. Oil-polluted water purification via the carbon-nanotubes-doped organohydrogel platform. Nano Res. 2022, 15, 5653–5662.

    CAS  Google Scholar 

  38. Warner, J. H.; Young, N. P.; Kirkland, A. I.; Briggs, G. A. D. Resolving strain in carbon nanotubes at the atomic level. Nat. Mater. 2011, 10, 958–962.

    CAS  Google Scholar 

  39. Timoshenko, S. Strength of Materials Part 1 Elementary Theory and Problems; D. Van Nostrand Company: New York, 1940.

    Google Scholar 

  40. Jin, Z.; Chu, H. B.; Wang, J. Y.; Hong, J. X.; Tan, W. C.; Li, Y. Ultralow feeding gas flow guiding growth of large-scale horizontally aligned single-walled carbon nanotube arrays. Nano Lett. 2007, 7, 2073–2079.

    CAS  Google Scholar 

  41. Luo, J.; Tian, P.; Pan, C. T.; Robertson, A. W.; Warner, J. H.; Hill, E. W.; Briggs, G. A. D. Ultralow secondary electron emission of graphene. ACS Nano 2011, 5, 1047–1055.

    CAS  Google Scholar 

  42. Alam, M. K.; Yaghoobi, P.; Chang, M.; Nojeh, A. Secondary electron yield of multiwalled carbon nanotubes. Appl. Phys. Lett. 2010, 96, 213113.

    Google Scholar 

  43. Lu, J. P. Elastic properties of carbon nanotubes and nanoropes. Phys. Rev. Lett. 1997, 79, 1297–1300.

    CAS  Google Scholar 

  44. Lassagne, B.; Ugnati, D.; Respaud, M. Ultrasensitive magnetometers based on carbon-nanotube mechanical resonators. Phys. Rev. Lett. 2011, 107, 130801.

    CAS  Google Scholar 

  45. Weaver, W. Jr.; Timoshenko, S. P.; Young, D. H. Vibration Problems in Engineering, 5th ed.; John Wiley & Sons: New York, 1990.

    Google Scholar 

  46. Lee, S. Y.; Chao, J. C. Out-of-plane vibrations of curved nonuniform beams of constant radius. J. Sound Vib. 2000, 238, 443–458.

    Google Scholar 

  47. Markus, S.; Nanasi, T. Vibration of curved beams. Shock Vib. Dig. 1981, 13, 3–14.

    Google Scholar 

  48. Cazaux, J. Some considerations on the electric field induced in insulators by electron bombardment. J. Appl. Phys. 1986, 59, 1418–1430.

    Google Scholar 

  49. Cazaux, J. Mechanisms of charging in electron spectroscopy. J. Electron Spectrosc. Relat. Phenom. 1999, 105, 155–185.

    CAS  Google Scholar 

  50. Stevens Kalceff, M. A.; Thorogood, G. J.; Short, K. T. Charge trapping and defect segregation in quartz. J. Appl. Phys. 1999, 86, 205–208.

    CAS  Google Scholar 

  51. Derycke, V.; Martel, R.; Appenzeller, J.; Avouris, P. Controlling doping and carrier injection in carbon nanotube transistors. Appl. Phys. Lett. 2002, 80, 2773–2775.

    CAS  Google Scholar 

  52. Li, J. J.; Chu, Y. H.; Zhu, K. D. Controlling signal transport in a carbon nanotube opto-transistor. Sci. Rep. 2016, 6, 37193.

    CAS  Google Scholar 

  53. Dürkop, T.; Getty, S. A.; Cobas, E.; Fuhrer, M. S. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 2004, 4, 35–39.

    Google Scholar 

  54. Yu, W. J.; Lee, Y. H. Strategy for carrier control in carbon nanotube transistors. ChemSusChem 2011, 4, 890–904.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51971157 and 12102307), Shenzhen Science and Technology Program (Nos. JCYJ20210324115412035 and ZDSYS20210813095534001), Tianjin Science Fund for Distinguished Young Scholars (No. 19JCJQJC61800), and the Natural Science Foundation of Hubei Province, China (No. 2021CFB138). We thank Mr Xiangqing Wang, Dr. Qibo Deng, Mr. Zuocheng Li, Prof. Jamie H. Warner, Prof. Zhong Jin, Prof. Yan Li, Prof. Li-Min Liu, and Prof. Quanshui Zheng for useful discussion, help, and assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wengen Ouyang or Jun Luo.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, C., Qin, Y., Ouyang, W. et al. Pseudo-break imaging of carbon nanotubes for determining elastic bending energies. Nano Res. 16, 7443–7451 (2023). https://doi.org/10.1007/s12274-022-5295-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5295-1

Keywords

Navigation