Skip to main content
Log in

Phosphorus induced activity-enhancement of Fe-N-C catalysts for high temperature polymer electrolyte membrane fuel cells

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Fe-N-C materials with atomically dispersed Fe—N4 sites could tolerate the poisoning of phosphate, and is regarded as the most promising alternative to costly Pt-based catalysts for the oxygen reduction in high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs). However, they still face the critical issue of insufficient activity in phosphoric acid. Herein, we demonstrate a P-doping strategy to increase the activity of Fe-N-C catalyst via a feasible one-pot method. X-ray absorption spectroscopy and electron microscopy with atomic resolution indicated that the P atom is bonded with the N in Fe—N4 site through C atoms. The as prepared Fe-NCP catalyst shows a half-wave potential of 0.75 V (vs. reversible hydrogen electrode (RHE), 0.1 M H3PO4), which is 60 and 40 mV higher than that of Fe-NC and commercial Pt/C catalysts, respectively. More importantly, the Fe-NCP catalyst could deliver a peak power density of 357 mW·cm−2 in a high temperature fuel cell (160 °C), exceeding the non-noble-metal catalysts ever reported. The enhancement of activity is attributed to the increasing charge density and poisoning tolerance of Fe—N4 caused by neighboring P. This work not only promotes the practical application of Fe-N-C materials in HT-PEMFCs, but also provides a feasible P-doping method for regulating the structure of single atom site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, S. Y.; Jiang, S. P. Prospects of fuel cell technologies. Natl. Sci. Rev. 2017, 4, 163–166.

    CAS  Google Scholar 

  2. Wang, Y.; Chen, K. S.; Mishler, J.; Cho, S. C.; Adroher, X. C. A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Appl. Energy 2011, 88, 981–1007.

    CAS  Google Scholar 

  3. Zhang, H. W.; Shen, P. K. Advances in the high performance polymer electrolyte membranes for fuel cells. Chem. Soc. Rev. 2012, 41, 2382–2394.

    CAS  Google Scholar 

  4. Wu, J. F.; Yuan, X. Z.; Martin, J. J.; Wang, H. J.; Zhang, J. J.; Shen, J.; Wu, S. H.; Merida, W. A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies. J. Power Sources 2008, 184, 104–119.

    CAS  Google Scholar 

  5. Gokhale, R.; Asset, T.; Qian, G. Q.; Serov, A.; Artyushkova, K.; Benicewicz, B. C.; Atanassov, P. Implementing PGM-free electrocatalysts in high-temperature polymer electrolyte membrane fuel cells. Electrochem. Commun. 2018, 93, 91–94.

    CAS  Google Scholar 

  6. Rosli, R. E.; Sulong, A. B.; Daud, W. R. W.; Zulkifley, M. A.; Husaini, T.; Rosli, M. I.; Majlan, E. H.; Haque, M. A. A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system. Int. J. Hydrogen Energy 2017, 42, 9293–9314.

    CAS  Google Scholar 

  7. Li, G. Q.; Kujawski, W.; Rynkowska, E. Advancements in proton exchange membranes for high-performance high-temperature proton exchange membrane fuel cells (HT-PEMFC). Rev. Chem. Eng. 2022, 38, 327–346.

    CAS  Google Scholar 

  8. Jaouen, F.; Jones, D.; Coutard, N.; Artero, V.; Strasser, P.; Kucernak, A. Toward platinum group metal-free catalysts for hydrogen/air proton-exchange membrane fuel cells. Johnson Matthey Technol. Rev. 2018, 62, 231–255.

    CAS  Google Scholar 

  9. He, Q. G.; Shyam, B.; Nishijima, M.; Ramaker, D.; Mukerjee, S. Mitigating phosphate anion poisoning of cathodic Pt/C catalysts in phosphoric acid fuel cells. J. Phys. Chem. C 2013, 117, 4877–4887.

    CAS  Google Scholar 

  10. Kaserer, S.; Caldwell, K. M.; Ramaker, D. E.; Roth, C. Analyzing the influence of H3PO4 as catalyst poison in high temperature PEM fuel cells using in-operando X-ray absorption spectroscopy. J. Phys. Chem. C 2013, 117, 6210–6217.

    CAS  Google Scholar 

  11. Li, Q.; Wu, G.; Cullen, D. A.; More, K. L.; Mack, N. H.; Chung, H. T.; Zelenay, P. Phosphate-tolerant oxygen reduction catalysts. ACS Catal. 2014, 4, 3193–3200.

    CAS  Google Scholar 

  12. Li, Y. P.; Jiang, L. H.; Wang, S. L.; Sun, G. Q. Influence of phosphoric anions on oxygen reduction reaction activity of platinum, and strategies to inhibit phosphoric anion adsorption. Chin. J. Catal. 2016, 37, 1134–1141.

    CAS  Google Scholar 

  13. He, Q. G.; Yang, X. F.; Chen, W.; Mukerjee, S.; Koel, B.; Chen, S. W. Influence of phosphate anion adsorption on the kinetics of oxygen electroreduction on low index Pt (hkl) single crystals. Phys. Chem. Chem. Phys. 2010, 12, 12544–12555.

    CAS  Google Scholar 

  14. Kamat, A.; Herrmann, M.; Ternes, D.; Klein, O.; Krewer, U.; Scholl, S. Experimental investigations into phosphoric acid adsorption on platinum catalysts in a high temperature PEM fuel cell. Fuel Cells 2011, 11, 511–517.

    CAS  Google Scholar 

  15. Liu, J.; Wang, J.; Zhang, L. J.; Fan, C. H.; Zhou, X.; Zhang, B. S.; Cui, X. J.; Wang, J. Q.; Cheng, Y.; Sun, S. H. et al. Axial ligand promoted phosphate tolerance of an atomically dispersed Fe catalyst towards the oxygen reduction reaction. J. Mater. Chem. A 2022, 10, 16722–16729.

    CAS  Google Scholar 

  16. Bai, L.; Duan, Z. Y.; Wen, X. D.; Guan, J. Q. Bifunctional atomic iron-based catalyst for oxygen electrode reactions. J. Catal. 2019, 378, 353–362.

    CAS  Google Scholar 

  17. Bai, L.; Hou, C. M.; Wen, X. D.; Guan, J. Q. Catalysis of oxygen reduction reaction on atomically dispersed copper- and nitrogen-codoped graphene. ACS Appl. Energy Mater. 2019, 2, 4755–4762.

    CAS  Google Scholar 

  18. Haider, R.; Wen, Y. C.; Ma, Z. F.; Wilkinson, D. P.; Zhang, L.; Yuan, X. X.; Song, S. Q.; Zhang, J. J. High temperature proton exchange membrane fuel cells: Progress in advanced materials and key technologies. Chem. Soc. Rev. 2021, 50, 1138–1187.

    CAS  Google Scholar 

  19. Zhang, Q. Q.; Guan, J. Q. Single-atom catalysts for electrocatalytic applications. Adv. Funct. Mater. 2020, 30, 2000768.

    CAS  Google Scholar 

  20. Cheng, Y.; He, S.; Lu, S. F.; Veder, J. P.; Johannessen, B.; Thomsen, L.; Saunders, M.; Becker, T.; De Marco, R.; Li, Q. F. et al. Iron single atoms on graphene as nonprecious metal catalysts for high-temperature polymer electrolyte membrane fuel cells. Adv. Sci. 2019, 6, 1802066.

    Google Scholar 

  21. Cheng, Y.; Zhang, J. Y.; Wu, X.; Tang, C. J.; Yang, S. Z.; Su, P. P.; Thomsen, L.; Zhao, F. P.; Lu, S. F.; Liu, J. et al. A template-free method to synthesis high density iron single atoms anchored on carbon nanotubes for high temperature polymer electrolyte membrane fuel cells. Nano Energy 2021, 80, 105534.

    CAS  Google Scholar 

  22. Cheng, Y.; Wang, M. E.; Lu, S.; Tang, C.; Wu, X.; Veder, J. P.; Johannessen, B.; Thomsen, L.; Zhang, J.; Yang, S. Z. et al. First demonstration of phosphate enhanced atomically dispersed bimetallic FeCu catalysts as Pt-free cathodes for high temperature phosphoric acid doped polybenzimidazole fuel cells. Appl. Catal. B: Environ. 2021, 284, 119717.

    CAS  Google Scholar 

  23. Müller-Hülstede, J.; Zierdt, T.; Schmies, H.; Schonvogel, D.; Meyer, Q.; Zhao, C.; Wagner, P.; Wark, M. Implementation of different Fe-N-C catalysts in high temperature proton exchange membrane fuel cells-effect of catalyst and catalyst layer on performance. J. Power Sources 2022, 537, 231529.

    Google Scholar 

  24. Xu, Y. S.; Zhu, L. P.; Cui, X. X.; Zhao, M. Y.; Li, Y. L.; Chen, L. L.; Jiang, W. C.; Jiang, T.; Yang, S. G.; Wang, Y. Graphitizing N-doped mesoporous carbon nanospheres via facile single atom iron growth for highly efficient oxygen reduction reaction. Nano Res. 2020, 13, 752–758.

    CAS  Google Scholar 

  25. Xiao, G. F.; Lu, R. H.; Liu, J. F.; Liao, X. B.; Wang, Z. Y.; Zhao, Y. Coordination environments tune the activity of oxygen catalysis on single atom catalysts: A computational study. Nano Res. 2022, 15, 3073–3081.

    CAS  Google Scholar 

  26. Li, R.; Wei, Z. D.; Gou, X. L. Nitrogen and phosphorus dual-doped graphene/carbon nanosheets as bifunctional electrocatalysts for oxygen reduction and evolution. ACS Catal. 2015, 5, 4133–4142.

    CAS  Google Scholar 

  27. Li, W.; Wang, D. D.; Liu, T. Y.; Tao, L.; Zhang, Y. G.; Huang, Y. C.; Du, S. Q.; Dong, C. L.; Kong, Z. J.; Li, Y. F. et al. Doping-modulated strain enhancing the phosphate tolerance on PtFe alloys for high-temperature proton exchange membrane fuel cells. Adv. Funct. Mater. 2022, 32, 2109244.

    CAS  Google Scholar 

  28. Wang, J.; Huang, Z. Q.; Liu, W.; Chang, C. R.; Tang, H. L.; Li, Z. J.; Chen, W. X.; Jia, C. J.; Yao, T.; Wei, S. Q. et al. Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 2017, 139, 17281–17284.

    CAS  Google Scholar 

  29. Fei, H. L.; Dong, J. C.; Arellano-Jiménez, M. J.; Ye, G. L.; Dong Kim, N.; Samuel, E. L. G.; Peng, Z. W.; Zhu, Z.; Qin, F.; Bao, J. M. et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Commun. 2015, 6, 8668.

    CAS  Google Scholar 

  30. Jiao, L.; Zhou, Y. X.; Jiang, H. L. Metal-organic framework-based CoP/reduced graphene oxide: High-performance bifunctional electrocatalyst for overall water splitting. Chem. Sci. 2016, 7, 1690–1695.

    CAS  Google Scholar 

  31. Qian, Z. J.; Hu, Z. W.; Zhang, Z. P.; Li, Z. L.; Dou, M. L.; Wang, F. Out-of-plane FeII-N4 moiety modified Fe-N co-doped porous carbons as high-performance electrocatalysts for the oxygen reduction reaction. Catal. Sci. Technol. 2017, 7, 4017–4023.

    CAS  Google Scholar 

  32. Zhang, F.; Zhang, D. Q.; Liu, W. Q.; Li, X. J.; Chen, Q. J. Fluorine enhanced pyridinic-N configuration as an ultra-active site for oxygen reduction reaction in both alkaline and acidic electrolytes. Carbon 2022, 187, 67–77.

    CAS  Google Scholar 

  33. Huo, J. J.; Lu, L.; Shen, Z. Y.; Liu, Y.; Guo, J. J.; Liu, Q. B.; Wang, Y.; Liu, H.; Wu, M. H.; Wang, G. X. A rational synthesis of single-atom iron-nitrogen electrocatalysts for highly efficient oxygen reduction reaction. J. Mater. Chem. A 2020, 8, 16271–16282.

    CAS  Google Scholar 

  34. Xu, H. X.; Cheng, D. J.; Cao, D. P.; Zeng, X. C. A universal principle for a rational design of single-atom electrocatalysts. Nat. Catal. 2018, 1, 339–348.

    CAS  Google Scholar 

  35. Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

    CAS  Google Scholar 

  36. Chen, Y. J.; Gao, R.; Ji, S. F.; Li, H. J.; Tang, K.; Jiang, P.; Hu, H. B.; Zhang, Z. D.; Hao, H. G.; Qu, Q. Y. et al. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal-organic frameworks: Enhanced oxygen reduction performance. Angew. Chem., Int. Ed. 2021, 60, 3212–3221.

    CAS  Google Scholar 

  37. Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.

    CAS  Google Scholar 

  38. Han, A.; Wang, X. J.; Tang, K.; Zhang, Z. D.; Ye, C. L.; Kong, K. J.; Hu, H. B.; Zheng, L. R.; Jiang, P.; Zhao, C. X. et al. An adjacent atomic platinum site enables single-atom iron with high oxygen reduction reaction performance. Angew. Chem., Int. Ed. 2021, 60, 19262–19271.

    CAS  Google Scholar 

  39. Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interaction on diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed., in press, https://doi.org/10.1002/anie.202213318.

  40. Hou, H. F.; Mao, J. J.; Han, Y. H.; Wu, F.; Zhang, M. N.; Wang, D. S.; Mao, L. Q.; Li, Y. D. Single-atom electrocatalysis: A new approach to in vivo electrochemical biosensing. Sci. China Chem. 2019, 62, 1720–1724.

    CAS  Google Scholar 

  41. Tian, S. B.; Hu, M.; Xu, Q.; Gong, W. B.; Chen, W. X.; Yang, J. R.; Zhu, Y. Q.; Chen, C.; He, J.; Liu, Q. et al. Single-atom Fe with Fe1N3 structure showing superior performances for both hydrogenation and transfer hydrogenation of nitrobenzene. Sci. China Mater. 2020, 64, 642–650.

    Google Scholar 

  42. Zhang, G. X.; Jia, Y.; Zhang, C.; Xiong, X. Y.; Sun, K.; Chen, R. D.; Chen, W. X.; Kuang, Y.; Zheng, L. R.; Tang, H. L. et al. A general route via formamide condensation to prepare atomically dispersed metal-nitrogen-carbon electrocatalysts for energy technologies. Energy Environ. Sci. 2019, 12, 1317–1325.

    CAS  Google Scholar 

  43. Zheng, N. C.; Lian, Y. K.; Zhou, Q.; Wang, R. L.; He, X.; Hu, R. T.; Hu, Z. F. An effective Fenton reaction by using waste ferric iron and red phosphorus. Chem. Eng. J. 2022, 437, 135265.

    CAS  Google Scholar 

  44. Wang, Y. X.; Xu, N. N.; He, R. N.; Peng, L. W.; Cai, D. Q.; Qiao, J. L. Large-scale defect-engineering tailored tri-doped graphene as a metal-free bifunctional catalyst for superior electrocatalytic oxygen reaction in rechargeable Zn-air battery. Appl. Catal. B: Environ. 2021, 285, 119811.

    CAS  Google Scholar 

  45. Sun, X. H.; Tuo, Y. X.; Ye, C. L.; Chen, C.; Lu, Q.; Li, G. N.; Jiang, P.; Chen, S. H.; Zhu, P.; Ma, M. et al. Phosphorus induced electron localization of single iron sites for boosted CO2 electroreduction reaction. Angew. Chem., Int. Ed. 2021, 60, 23614–23618.

    CAS  Google Scholar 

  46. Hu, Y.; Jensen, J. O.; Pan, C.; Cleemann, L. N.; Shypunov, I.; Li, Q. F. Immunity of the Fe-N-C catalysts to electrolyte adsorption: Phosphate but not perchloric anions. Appl. Catal. B: Environ. 2018, 234, 357–364.

    CAS  Google Scholar 

  47. Holst-Olesen, K.; Reda, M.; Hansen, H. A.; Vegge, T.; Arenz, M. Enhanced oxygen reduction activity by selective anion adsorption on non-precious-metal catalysts. ACS Catal. 2018, 8, 7104–7112.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2018YFA0702002), the Beijing Natural Science Foundation (No. Z210016), and the National Natural Science Foundation of China (No. 21935001)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiazhan Li, Zhi Lü, Wen Liu or Xiaoming Sun.

Electronic Supplementary Material

12274_2022_5314_MOESM1_ESM.pdf

Phosphorus induced activity-enhancement of Fe-N-C catalysts for high temperature polymer electrolyte membrane fuel cells

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, X., Li, Y., Sun, H. et al. Phosphorus induced activity-enhancement of Fe-N-C catalysts for high temperature polymer electrolyte membrane fuel cells. Nano Res. 16, 6531–6536 (2023). https://doi.org/10.1007/s12274-022-5314-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5314-2

Keywords

Navigation