Skip to main content
Log in

Crystal defect engineering of Bi2Te3 nanosheets by Ce doping for efficient electrocatalytic nitrogen reduction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Electrochemical nitrogen reduction reaction (NRR) is a promising method for the synthesis of ammonia (NH3). However, the electrochemical NRR process remains a great challenge in achieving a high NH3 yield rate and a high Faradaic efficiency (FE) due to the extremely strong N≡N bonds and the competing hydrogen evolution reaction (HER). Recently, bismuth telluride (Bi2Te3) with two-dimensional layered structure has been reported as a promising catalyst for N2 fixation. Herein, to further enhance its NRR activity, a general doping strategy is developed to introduce and modulate the crystal defects of Bi2Te3 nanosheets by adjusting the amount of Ce dopant (denoted as Cex−Bi2Te3, where x represents the designed molar ratio of Ce/Bi). Meanwhile, the crystal defects can be designed and controlled by means of ion substitution and charge compensation. At −0.60 V versus the reversible hydrogen electrode (RHE), Ce0.3−Bi2Te3 exhibits a high NH3 yield (78.2 µg·h−1·mg −1cat ), a high FE (19.3%), and excellent structural and electrochemical stability. Its outstanding catalytic activity is attributed to the tunable crystal defects by Ce doping. This work not only contributes to enhancing the NRR activity of Bi2Te3 nanosheets, but also provides a reliable approach to prepare high-performance electrocatalysts by controlling the type and concentration of crystal defects for artificial N2 fixation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Soloveichik, G. Electrochemical synthesis of ammonia as a potential alternative to the Haber-Bosch process. Nat. Catal. 2019, 2, 377–380.

    CAS  Google Scholar 

  2. Liang, J.; Liu, P. Y.; Li, Q. Y.; Li, T. S.; Yue, L. C.; Luo, Y. S.; Liu, Q.; Li, N.; Tang, B.; Alshehri, A. A. et al. Amorphous boron carbide on titanium dioxide nanobelt arrays for high-efficiency electrocatalytic NO reduction to NH3. Angew. Chem., Int. Ed. 2022, 61, e202202087.

    CAS  Google Scholar 

  3. Deng, J.; Iñiguez, J. A.; Liu, C. Electrocatalytic nitrogen reduction at low temperature. Joule 2018, 2, 846–856.

    CAS  Google Scholar 

  4. Li, S. X.; Luo, Y. L.; Yue, L. C.; Li, T. S.; Wang, Y.; Liu, Q.; Cui, G. W.; Zhang, F.; Asiri, A. M.; Sun, X. P. An amorphous WC thin film enabled high-efficiency N2 reduction electrocatalysis under ambient conditions. Chem. Commun. 2021, 57, 7806–7809.

    CAS  Google Scholar 

  5. Chen, X. Z.; Li, N.; Kong, Z. Z.; Ong, W. J.; Zhao, X. J. Photocatalytic fixation of nitrogen to ammonia: State-of-the-art advancements and future prospects. Mater. Horiz. 2018, 5, 9–27.

    CAS  Google Scholar 

  6. Wen, G. L.; Liang, J.; Liu, Q.; Li, T. S.; An, X.; Zhang, F.; Alshehri, A. A.; Alzahrani, K. A.; Luo, Y. L.; Kong, Q. Q. et al. Ambient ammonia production via electrocatalytic nitrite reduction catalyzed by a CoP nanoarray. Nano Res. 2022, 15, 972–977.

    CAS  Google Scholar 

  7. Cui, X. Y.; Tang, C.; Zhang, Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv. Energy Mater. 2018, 8, 1800369.

    Google Scholar 

  8. Xue, X. L.; Chen, R. P.; Yan, C. Z.; Zhao, P. Y.; Hu, Y.; Zhang, W. J.; Yang, S. Y.; Jin, Z. Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: Advances, challenges and perspectives. Nano Res. 2019, 12, 1229–1249.

    CAS  Google Scholar 

  9. Ma, B. Y.; Zhao, H. T.; Li, T. S.; Liu, Q.; Luo, Y. S.; Li, C. B.; Lu, S. Y.; Asiri, A. M.; Ma, D. W.; Sun, X. P. Iron-group electrocatalysts for ambient nitrogen reduction reaction in aqueous media. Nano Res. 2021, 14, 555–569.

    CAS  Google Scholar 

  10. Mehta, P.; Barboun, P.; Herrera, F. A.; Kim, J.; Rumbach, P.; Go, D. B.; Hicks, J. C.; Schneider, W. F. Overcoming ammonia synthesis scaling relations with plasma-enabled catalysis. Nat. Catal. 2018, 1, 269–275.

    Google Scholar 

  11. Cao, N.; Chen, Z.; Zang, K. T.; Xu, J.; Zhong, J.; Luo, J.; Xu, X.; Zheng, G. F. Doping strain induced Bi-Ti3+ pairs for efficient N2 activation and electrocatalytic fixation. Nat. Commun. 2019, 10, 2877.

    Google Scholar 

  12. Liu, Q.; Xu, T.; Luo, Y. L.; Kong, Q. Q.; Li, T. S.; Lu, S. Y.; Alshehri, A. A.; Alzahrani, K. A.; Sun, X. P. Recent advances in strategies for highly selective electrocatalytic N2 reduction toward ambient NH3 synthesis. Curr. Opin. Electrochem. 2021, 29, 100766.

    CAS  Google Scholar 

  13. Xu, T.; Liang, J.; Wang, Y. Y.; Li, S. X.; Du, Z. B.; Li, T. S.; Liu, Q.; Luo, Y. L.; Zhang, F.; Shi, X. F. et al. Enhancing electrocatalytic N2-to-NH3 fixation by suppressing hydrogen evolution with alkylthiols modified Fe3P nanoarrays. Nano Res. 2022, 15, 1039–1046.

    CAS  Google Scholar 

  14. Zhao, Y. X.; Zhao, Y. F.; Shi, R.; Wang, B.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700 nm. Adv. Mater. 2019, 31, 1806482.

    Google Scholar 

  15. Tao, H. C.; Choi, C.; Ding, L. X.; Jiang, Z.; Han, Z. S.; Jia, M. W.; Fan, Q.; Gao, Y. N.; Wang, H. H.; Robertson, A. W. et al. Nitrogen fixation by Ru single-atom electrocatalytic reduction. Chem 2019, 5, 204–214.

    CAS  Google Scholar 

  16. Lv, C. D.; Qian, Y. M.; Yan, C. S.; Ding, Y.; Liu, Y. Y.; Chen, G.; Yu, G. H. Defect engineering metal-free polymeric carbon nitride electrocatalyst for effective nitrogen fixation under ambient conditions. Angew. Chem., Int. Ed. 2018, 57, 10246–10250.

    CAS  Google Scholar 

  17. Liu, C. W.; Li, Q. Y.; Wu, C. Z.; Zhang, J.; Jin, Y. G.; MacFarlane, D. R.; Sun, C. H. Single-boron catalysts for nitrogen reduction reaction. J. Am. Chem. Soc. 2019, 141, 2884–2888.

    CAS  Google Scholar 

  18. Ling, C. Y.; Niu, X. H.; Li, Q.; Du, A. J.; Wang, J. L. Metal-free single atom catalyst for N2 fixation driven by visible light. J. Am. Chem. Soc. 2018, 140, 14161–14168.

    CAS  Google Scholar 

  19. Zhao, D. L.; Liang, J.; Li, J.; Zhang, L. C.; Dong, K.; Yue, L. C.; Luo, Y. S.; Ren, Y. C.; Liu, Q.; Hamdy, M. S. et al. A TiO2−x nanobelt array with oxygen vacancies: An efficient electrocatalyst toward nitrite conversion to ammonia. Chem. Commun. 2022, 58, 3669–3672.

    CAS  Google Scholar 

  20. Tong, Y. Y.; Guo, H. P.; Liu, D. L.; Yan, X.; Su, P. P.; Liang, J.; Zhou, S.; Liu, J.; Lu, G. Q.; Dou, S. X. Vacancy engineering of iron-doped W18O49 nanoreactors for low-barrier electrochemical nitrogen reduction. Angew. Chem., Int. Ed. 2020, 59, 7356–7361.

    CAS  Google Scholar 

  21. Zhang, L. L.; Cong, M. Y.; Ding, X.; Jin, Y.; Xu, F. F.; Wang, Y.; Chen, L.; Zhang, L. X. A Janus Fe-SnO2 catalyst that enables bifunctional electrochemical nitrogen fixation. Angew. Chem., Int. Ed. 2020, 59, 10888–10893.

    CAS  Google Scholar 

  22. Sun, T.; Zhang, G. Q.; Xu, D.; Lian, X.; Li, H. X.; Chen, W.; Su, C. L. Defect chemistry in 2D materials for electrocatalysis. Mater. Today Energy 2019, 12, 215–238.

    Google Scholar 

  23. Norris, D. J.; Efros, A. L.; Erwin, S. C. Doped nanocrystals. Science 2008, 319, 1776–1779.

    CAS  Google Scholar 

  24. Jo, W. J.; Jang, J. W.; Kong, K. J.; Kang, H. J.; Kim, J. Y.; Jun, H.; Parmar, K. P. S.; Lee, J. S. Phosphate doping into monoclinic BiVO4 for enhanced photoelectrochemical water oxidation activity. Angew. Chem., Int. Ed. 2012, 51, 3147–3151.

    CAS  Google Scholar 

  25. Lei, F. C.; Zhang, L.; Sun, Y. F.; Liang, L.; Liu, K. T.; Xu, J. Q.; Zhang, Q.; Pan, B. C.; Luo, Y.; Xie, Y. Atomic-layer-confined doping for atomic-level insights into visible-light water splitting. Angew. Chem., Int. Ed. 2015, 54, 9266–9270.

    CAS  Google Scholar 

  26. Sun, D. D.; Zhang, G. J.; Li, D.; Liu, S. T.; Jia, X. L.; Zhou, J. S. A layered Bi2Te3 nanoplates/graphene composite with high gravimetric and volumetric performance for Na-ion storage. Sustainable Energy Fuels 2011, 3, 3163–3171.

    Google Scholar 

  27. Min, Y.; Park, G.; Kim, B.; Giri, A.; Zeng, J.; Roh, J. W.; Kim, S. I.; Lee, K. H.; Jeong, U. Synthesis of multishell nanoplates by consecutive epitaxial growth of Bi2Se3 and Bi2Te3 nanoplates and enhanced thermoelectric properties. ACS Nano 2015, 9, 6843–6853.

    CAS  Google Scholar 

  28. Zhang, N.; Zheng, F. F.; Huang, B. L.; Ji, Y. J.; Shao, Q.; Li, Y. Y.; Xiao, X. H.; Huang, X. Q. Exploring Bi2Te3 nanoplates as versatile catalysts for electrochemical reduction of small molecules. Adv. Mater. 2020, 32, 1906477.

    CAS  Google Scholar 

  29. Liu, M.; Yin, S. L.; Ren, T. L.; Xu, Y.; Wang, Z. Q.; Li, X. N.; Wang, L.; Wang, H. J. Two-dimensional heterojunction electrocatalyst: Au-Bi2Te3 nanosheets for electrochemical ammonia synthesis. ACS Appl. Mater. Interfaces 2021, 13, 47458–47464.

    CAS  Google Scholar 

  30. Wang, Q. T.; Cui, K.; Li, J.; Wu, Y. X.; Yang, Y. X.; Zhou, X. Z.; Ma, G. F.; Yang, Z. W.; Lei, Z. Q.; Ren, S. F. Iron ion irradiated Bi2Te3 nanosheets with defects and regulated hydrophilicity to enhance the hydrogen evolution reaction. Nanoscale 2020, 12, 16208–16214.

    CAS  Google Scholar 

  31. Qu, Q.; Liu, B.; Liang, J.; Li, H.; Wang, J. N.; Pan, D.; Sou, I. K. Expediting hydrogen evolution through topological surface states on Bi2Te3. ACS Catal. 2020, 10, 2656–2666.

    CAS  Google Scholar 

  32. Wu, T. W.; Zhu, X. J.; Xing, Z.; Mou, S. Y.; Li, C. B.; Qiao, Y. X.; Liu, Q.; Luo, Y. L.; Shi, X. F.; Zhang, Y. N. et al. Greatly improving electrochemical N2 reduction over TiO2 nanoparticles by iron doping. Angew. Chem., Int. Ed. 2019, 58, 18449–18453.

    CAS  Google Scholar 

  33. Xie, H. T.; Wang, H. B.; Geng, Q.; Xing, Z.; Wang, W.; Chen, J. Y.; Ji, L.; Chang, L.; Wang, Z. M.; Mao, J. Oxygen vacancies of Cr-doped CeO2 nanorods that efficiently enhance the performance of electrocatalytic N2 fixation to NH3 under ambient conditions. Inorg. Chem. 2019, 58, 5423–5427.

    CAS  Google Scholar 

  34. Xu, B.; Xia, L.; Zhou, F. L.; Zhao, R. H.; Chen, H. Y.; Wang, T.; Zhou, Q.; Liu, Q.; Cui, G. W.; Xiong, X. L. et al. Enhancing electrocatalytic N2 reduction to NH3 by CeO2 nanorod with oxygen vacancies. ACS Sustainable Chem. Eng. 2011, 7, 2889–2893.

    Google Scholar 

  35. Yang, X. T.; Ma, Y. F.; Liu, Y.; Wang, K. K.; Wang, Y. Q.; Liu, M.; Qiu, X. Q.; Li, W. Z.; Li, J. Defect-induced Ce-doped Bi2WO6 for efficient electrocatalytic N2 reduction. ACS Appl. Mater. Interfaces 2021, 13, 19864–19872.

    CAS  Google Scholar 

  36. Xu, Y. B.; Ren, Z. M.; Ren, W. L.; Cao, G. H.; Deng, K.; Zhong, Y. B. Hydrothermal synthesis of single-crystalline Bi2Te3 nanoplates. Mater. Lett. 2008, 62, 4273–4276.

    CAS  Google Scholar 

  37. Musah, J. D.; Guo, C.; Novitskii, A.; Serhiienko, I.; Adesina, A. E.; Khovaylo, V.; Wu, C. M. L.; Zapien, J. A.; Roy, V. A. L. Ultralow thermal conductivity in dual-doped n-type Bi2Te3 material for enhanced thermoelectric properties. Adv. Electron. Mater. 2021, 7, 2000910.

    CAS  Google Scholar 

  38. Shahil, K. M. F.; Hossain, M. Z.; Teweldebrhan, D.; Balandin, A. A. Crystal symmetry breaking in few-quintuple Bi2Te3 films: Applications in nanometrology of topological insulators. Appl. Phys. Lett. 2010, 96, 153103.

    Google Scholar 

  39. Li, D.; Qin, X. Y.; Liu, Y. F.; Wang, N. N.; Song, C. J.; Sun, R. R. Improved thermoelectric properties for solution grown Bi2Te3−xSex nanoplatelet composites. RSC Adv. 2013, 3, 2632–2638.

    CAS  Google Scholar 

  40. Qi, X.; Ma, W. G.; Zhang, X.; Zhang, C. Raman characterization and transport properties of morphology-dependent two-dimensional Bi2Te3 nanofilms. Appl. Surf. Sci. 2018, 457, 41–48.

    CAS  Google Scholar 

  41. Liu, P. X.; Jing, P.; Xu, X.; Liu, B. C.; Zhang, J. Structural reconstruction of Ce-MOF with active sites for efficient electrocatalytic N2 reduction. ACS Appl. Energy Mater. 2021, 4, 12128–12136.

    CAS  Google Scholar 

  42. Zhang, M.; Zhang, L.; Wang, H.; Bian, Z. Y. Hybrid electrocatalytic ozonation treatment of high-salinity organic wastewater using Ni−Ce/OMC particle electrodes. Sci. Total Environ. 2020, 724, 138170.

    CAS  Google Scholar 

  43. Dai, Z.; Qin, F.; Zhao, H. P.; Ding, J.; Liu, Y. L.; Chen, R. Crystal defect engineering of aurivillius Bi2MoO6 by Ce doping for increased reactive species production in photocatalysis. ACS Catal. 2016, 6, 3180–3192.

    CAS  Google Scholar 

  44. Liu, P.; Li, J. W.; Yan, J. Y.; Song, W. B. Defect-rich Fe-doped NiS/MoS2 heterostructured ultrathin nanosheets for efficient overall water splitting. Phys. Chem. Chem. Phys. 2022, 24, 8344–8350.

    CAS  Google Scholar 

  45. Tao, L.; Duan, X. D.; Wang, C.; Duan, X. F.; Wang, S. Y. Plasma-engineered MoS2 thin-film as an efficient electrocatalyst for hydrogen evolution reaction. Chem. Commun. 2015, 51, 7470–7473.

    CAS  Google Scholar 

  46. Huang, W. T.; Zhou, Q. W.; Su, S. Q.; Li, J.; Lu, X. B.; Gao, X. S.; Wang, X.; Jin, M. L.; Zhou, G. F.; Zhang, Z. et al. Ion beam defect engineering on ReS2/Si photocathode with significantly enhanced hydrogen evolution reaction. Adv. Mater. Interfaces 2019, 6, 1801663.

    Google Scholar 

  47. Sun, Y. J.; Liang, Y. X.; Luo, M. C.; Lv, F.; Qin, Y. N.; Wang, L.; Xu, C.; Fu, E. G.; Guo, S. J. Defects and interfaces on PtPb nanoplates boost fuel cell electrocatalysis. Small 2018, 14, 1702259.

    Google Scholar 

  48. Geng, Z.; Liu, Y.; Kong, X.; Li, P.; Li, K.; Liu, Z.; Du, J.; Shu, M.; Si, R.; Zeng, J. Achieving a record-high yield rate of 120.9 \(\mu\rm{g}_{\text{NH}_{3}}\cdot\text{mg}_{\text{cat.}}^{-1}\cdot\rm{h}^{-1}\) for N2 electrochemical reduction over Ru single-atom catalysts. Adv. Mater. 2018, 30, 1803498.

    Google Scholar 

  49. Wang, J.; Huang, B. L.; Ji, Y. J.; Sun, M. Z.; Wu, T.; Yin, R. G.; Zhu, X.; Li, Y. Y.; Shao, Q.; Huang, X. Q. A general strategy to glassy M-Te (M = Ru, Rh, Ir) porous nanorods for efficient electrochemical N2 fixation. Adv. Mater. 2020, 32, 1907112.

    CAS  Google Scholar 

  50. Chen, C.; Zhu, X. R.; Wen, X. J.; Zhou, Y. Y.; Zhou, L.; Li, H.; Tao, L.; Li, Q. L.; Du, S. Q.; Liu, T. T. et al. Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions. Nat. Chem. 2020, 12, 717–724.

    CAS  Google Scholar 

  51. Liu, Y. Q.; Huang, L.; Fang, Y. X.; Zhu, X. Y.; Nan, J. L.; Dong, S. J. Interfacial electron regulation of Rh atomic layer-decorated SnO2 heterostructures for enhancing electrocatalytic nitrogen reduction. ACS Appl. Mater. Interfaces 2022, 14, 12304–12313.

    CAS  Google Scholar 

  52. Zhao, Z. Q.; Park, J.; Choi, C.; Hong, S.; Hui, X. C.; Zhang, H.; Benedict Lo, T. W.; Robertson, A. W.; Lv, Z. X.; Jung, Y. et al. Engineering vacancy and hydrophobicity of two-dimensional TaTe2 for efficient and stable electrocatalytic N2 reduction. Innovation 2022, 3, 100190.

    CAS  Google Scholar 

  53. Liu, Q.; Li, X. L.; He, Q.; Khalil, A.; Liu, D. B.; Xiang, T.; Wu, X. J.; Song, L. Gram-scale aqueous synthesis of stable few-layered 1T-MoS2: Applications for visible-light-driven photocatalytic hydrogen evolution. Small 2015, 11, 5556–5564.

    CAS  Google Scholar 

  54. Wang, D. Z.; Zhang, X. Y.; Bao, S. Y.; Zhang, Z. T.; Fei, H.; Wu, Z. Z. Phase engineering of a multiphasic 1T/2H MoS2 catalyst for highly efficient hydrogen evolution. J. Mater. Chem. A 2017, 5, 2681–2688.

    CAS  Google Scholar 

  55. Wang, J. Y.; Tang, J.; Guo, T.; Zhang, S. H.; Xia, W.; Tan, H. B.; Bando, Y.; Wang, X.; Yamauchi, Y. C3N4-digested 3D construction of hierarchical metallic phase MoS2 nanostructures. J. Mater. Chem. A 2019, 7, 18388–18396.

    CAS  Google Scholar 

  56. Plecháček, T.; Navrátil, J.; Horák, J.; Lošťák, P. Defect structure of Pb-doped Bi2Te3 single crystals. Philos. Mag. 2004, 84, 2217–2228.

    Google Scholar 

  57. Kim, Y. H.; Kim, Y.; Kim, H. S.; Choi, S. M.; Kim, S. I.; Lee, K. H. Concentration-dependent excess Cu doping behavior and influence on thermoelectric properties in Bi2Te3. Int. J. Energy Res. 2022, 46, 3707–3713.

    CAS  Google Scholar 

  58. Zhao, Y. M.; Rabouw, F. T.; van Puffelen, T.; van Walree, C. A.; Gamelin, D. R.; de Mello Donegá, C.; Meijerink, A. Lanthanide-doped CaS and SrS luminescent nanocrystals: A single-source precursor approach for doping. J. Am. Chem. Soc. 2014, 136, 16533–16543.

    CAS  Google Scholar 

  59. Kiriya, D.; Tosun, M.; Zhao, P. D.; Kang, J. S.; Javey, A. Air-stable surface charge transfer doping of MoS2 by benzyl viologen. J. Am. Chem. Soc. 2014, 136, 7853–7856.

    CAS  Google Scholar 

  60. Bi, J. H.; Ying, H.; Xu, H.; Zhao, X. Y.; Du, X. Y.; Hao, J. C.; Li, Z. H. Phosphorus vacancy-engineered Ce-doped CoP nanosheets for the electrocatalytic oxidation of 5-hydroxymethylfurfural. Chem. Commun. 2022, 58, 7817–7820.

    CAS  Google Scholar 

  61. Yan, G. Y.; Wu, T.; Xing, S. M.; Chen, F.; Zhao, B. W.; Gao, W. J. Ultrathin Ce-doped La2O3 nanofilm electrocatalysts for efficient oxygen evolution reactions. Nanotechnology 2022, 33, 245405.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 22074137 and 21721003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaojun Dong.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nan, J., Liu, Y., Chao, D. et al. Crystal defect engineering of Bi2Te3 nanosheets by Ce doping for efficient electrocatalytic nitrogen reduction. Nano Res. 16, 6544–6551 (2023). https://doi.org/10.1007/s12274-022-5319-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5319-x

Keywords

Navigation