Skip to main content
Log in

Tuning coordination environment of iron ions to ensure ultra-high pseudocapacitive capability in iron oxide

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The mechanism governing the pseudocapacitive lithium storage behavior is one of the most critical unsolved issues in conversion-type anodes for lithium-ion batteries. In this work, we, for the first time, demonstrate that the pseudocapacitive capability of iron oxide-based anodes is closely associated with the electronic structures of iron ions. As proof of concept, the introduction of amorphization, nitrogen doping, and oxygen vacancies reduces the coordination of iron ions and contributes significantly to the pseudocapacitive lithium storage capability of iron oxide, reaching up to 96% of the specific capacity at 1 mV·s−1. Due to the significantly modulated coordination environment, the 3d electrons of Fe(II) are delocalized with increased spin state and the energy band gap is narrowed, accompanied by an upshift of Fermi energy. The redox activity and carrier mobility of iron oxides are substantially increased, which substantially enhance the exchange current density and thereby improve the pseudocapacitive capability of iron oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2011, 414, 359–367.

    Google Scholar 

  2. Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.

    CAS  Google Scholar 

  3. Nitta, N.; Wu, F. X.; Lee, J. T.; Yushin, G. Li-ion battery materials: Present and future. Mater. Today 2015, 18, 252–264.

    CAS  Google Scholar 

  4. Huang, G.; Han, J. H.; Lu, Z.; Wei, D. X.; Kashani, H.; Watanabe, K.; Chen, M. W. Ultrastable silicon anode by three-dimensional nanoarchitecture design. ACS Nano 2020, 14, 4374–4382.

    CAS  Google Scholar 

  5. Jo, C.; Groombridge, A. S.; De La Verpilliere, J.; Lee, J. T.; Son, Y.; Liang, H. L.; Boies, A. M.; De Volder, M. Continuous-flow synthesis of carbon-coated silicon/iron silicide secondary particles for Li-ion batteries. ACS Nano 2020, 14, 698–707.

    CAS  Google Scholar 

  6. Huang, R. T.; Wang, L. J.; Zhang, Q.; Chen, Z. W.; Li, Z.; Pan, D. Y.; Zhao, B.; Wu, M. H.; Wu, C. M. L.; Shek, C. H. Irradiated graphene loaded with SnO2 quantum dots for energy storage. ACS Nano 2015, 9, 11351–11361.

    CAS  Google Scholar 

  7. Park, M. G.; Lee, D. H.; Jung, H.; Choi, J. H.; Park, C. M. Sn-based nanocomposite for Li-ion battery anode with high energy density, rate capability, and reversibility. ACS Nano 2018, 12, 2955–2967.

    CAS  Google Scholar 

  8. Shang, M. W.; Chen, X.; Li, B. X.; Niu, J. J. A fast charge/discharge and wide-temperature battery with a germanium oxide layer on a Ti3C2 MXene matrix as anode. ACS Nano 2020, 14, 3678–3686.

    CAS  Google Scholar 

  9. Mo, R. W.; Lei, Z. Y.; Rooney, D.; Sun, K. N. Three-dimensional double-walled ultrathin graphite tube conductive scaffold with encapsulated germanium nanoparticles as a high-areal-capacity and cycle-stable anode for lithium-ion batteries. ACS Nano 2019, 13, 7536–7544.

    CAS  Google Scholar 

  10. Tanaka, S.; Kaneti, Y. V.; Septiani, N. L. W.; Dou, S. X.; Bando, Y.; Hossain, S. A.; Kim, J.; Yamauchi, Y. A review on iron oxide-based nanoarchitectures for biomedical, energy storage, and environmental applications. Small Methods 2019, 3, 1800512.

    Google Scholar 

  11. Li, H. H.; Zhou, L.; Zhang, L. L.; Fan, C. Y.; Fan, H. H.; Wu, X. L.; Sun, H. Z.; Zhang, J. P. Co3O4 nanospheres embedded in a nitrogen-doped carbon framework: An electrode with fast surface-controlled redox kinetics for lithium storage. ACS Energy Lett. 2017, 2, 52–59.

    CAS  Google Scholar 

  12. Eom, W.; Kim, A.; Park, H.; Kim, H.; Han, T. H. Graphene-mimicking 2D porous Co3O4 nanofoils for lithium battery applications. Adv. Funct. Mater. 2016, 26, 7605–7613.

    CAS  Google Scholar 

  13. Wang, Y. W.; Yu, L.; Lou, X. W. Formation of triple-shelled molybdenum-polydopamine hollow spheres and their conversion into MoO2/carbon composite hollow spheres for lithium-ion batteries. Angew. Chem., Int. Ed. 2016, 55, 14668–14672.

    CAS  Google Scholar 

  14. Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499.

    CAS  Google Scholar 

  15. Taberna, P. L.; Mitra, S.; Poizot, P.; Simon, P.; Tarascon, J. M. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat. Mater. 2006, 5, 567–573.

    CAS  Google Scholar 

  16. Ban, C. M.; Wu, Z. C.; Gillaspie, D. T.; Chen, L.; Yan, Y. F.; Blackburn, J. L.; Dillon, A. C. Nanostructured Fe3O4/SWNT electrode: Binder-free and high-rate Li-ion anode. Adv. Mater. 2010, 22, E145–E149.

    CAS  Google Scholar 

  17. Wang, J. H.; Gao, M. X.; Pan, H. G.; Liu, Y. F.; Zhang, Z.; Li, J. X.; Su, Q. M.; Du, G. H.; Zhu, M.; Ouyang, L. Z. et al. Mesoporous Fe2O3 flakes of high aspect ratio encased within thin carbon skeleton for superior lithium-ion battery anodes. J. Mater. Chem. A 2015, 3, 14178–14187.

    CAS  Google Scholar 

  18. Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.

    CAS  Google Scholar 

  19. Gür, T. M. Review of electrical energy storage technologies, materials and systems: Challenges and prospects for large-scale grid storage. Energy Environ. Sci. 2018, 11, 2696–2767.

    Google Scholar 

  20. Jiang, Y. Q.; Liu, J. P. Definitions of pseudocapacitive materials: A brief review. Energy Environ. Mater. 2019, 2, 30–37.

    Google Scholar 

  21. Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P. L.; Tolbert, S. H.; Abruña, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518–522.

    CAS  Google Scholar 

  22. Choi, C.; Ashby, D. S.; Butts, D. M.; DeBlock, R. H.; Wei, Q. L.; Lau, J.; Dunn, B. Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater. 2020, 5, 5–19.

    Google Scholar 

  23. Simon, P.; Gogotsi, Y.; Dunn, B. Where do batteries end and supercapacitors begin? Science 2014, 343, 1210–1211.

    CAS  Google Scholar 

  24. Wang, Y.; Chen, L.; Liu, H. T.; Xiong, Z. M.; Zhao, L.; Liu, S. H.; Huang, C. M.; Zhao, Y. M. Cornlike ordered N-doped carbon coated hollow Fe3O4 by magnetic self-assembly for the application of Li-ion battery. Chem. Eng. J. 2019, 356, 746–755.

    Google Scholar 

  25. Wu, Q. C.; Yu, R.; Zhou, Z. H.; Liu, H. W.; Jiang, R. L. Encapsulation of a core-shell porous Fe3O4@carbon material with reduced graphene oxide for Li+ battery anodes with long cyclability. Langmuir 2021, 37, 785–792.

    CAS  Google Scholar 

  26. Wang, J. T.; Yang, X. J.; Wang, Y. B.; Jin, S. L.; Cai, W. D.; Liu, B. S.; Ma, C.; Liu, X. J.; Qiao, W. M.; Ling, L. C. Rational design and synthesis of sandwich-like reduced graphene oxide/Fe2O3/N-doped carbon nanosheets as high-performance anode materials for lithium-ion batteries. Chem. Eng. Sci. 2021, 231, 116271.

    CAS  Google Scholar 

  27. Sun, B. Y.; Lou, S. F.; Qian, Z. Y.; Zuo, P. J.; Du, C. Y.; Ma, Y. L.; Huo, H.; Xie, J. Y.; Wang, J. J.; Yin, G. P. Pseudocapacitive Li+ storage boosts ultrahigh rate performance of structure-tailored CoFe2O4@Fe2O3 hollow spheres triggered by engineered surface and near-surface reactions. Nano Energy 2019, 66, 104179.

    CAS  Google Scholar 

  28. Liao, C.; Wu, S. P. Pseudocapacitance behavior on Fe3O4-pillared SiOx microsphere wrapped by graphene as high performance anodes for lithium-ion batteries. Chem. Eng. J. 2019, 355, 805–814.

    CAS  Google Scholar 

  29. Liu, Z. K.; Huang, J.; Liu, B.; Fang, D.; Wang, T.; Yang, Q. L.; Dong, L. J.; Hu, G. H.; Xiong, C. X. Constructing enhanced pseudocapacitive Li+ intercalation via multiple ionically bonded interfaces toward advanced lithium storage. Energy Storage Mater. 2020, 24, 138–146.

    Google Scholar 

  30. Dong, H.; Deng, M. X.; Sun, D.; Zhao, Y. T.; Liu, H.; Xie, M.; Dong, W. J.; Huang, F. Q. Amorphous lithium-phosphate-encapsulated Fe2O3 as a high-rate and long-life anode for lithium-ion batteries. ACS Appl. Energy Mater. 2022, 5, 3463–3470.

    CAS  Google Scholar 

  31. Xu, J. L.; Zhang, X.; Miao, Y. X.; Wen, M. X.; Yan, W. J.; Lu, P.; Wang, Z. R.; Sun, Q. In-situ plantation of Fe3O4@C nanoparticles on reduced graphene oxide nanosheet as high-performance anode for lithium/sodium-ion batteries. Appl. Surf. Sci. 2021, 546, 149163.

    CAS  Google Scholar 

  32. Ge, J. M.; Wang, B.; Wang, J.; Zhang, Q. F.; Lu, B. A. Nature of FeSe2/N-C anode for high performance potassium ion hybrid capacitor. Adv. Energy Mater. 2020, 10, 1903277.

    CAS  Google Scholar 

  33. Niu, H.; Yang, Q. H.; Wang, Q.; Jing, X. Y.; Zhu, K.; Ye, K.; Wang, G. L.; Cao, D. X.; Yan, J. Oxygen vacancies-enriched sub-7 nm cross-linked Bi2.88Fe5O12−x nanoparticles anchored MXene for electrochemical energy storage with high volumetric performances. Nano Energy 2020, 78, 105360.

    CAS  Google Scholar 

  34. Zhang, Z.; Lu, J. P.; Yun, T.; Zheng, M. R.; Pan, J. S.; Sow, C. H.; Tok, E. S. Desorption of ambient gas molecules and phase transformation of α-Fe2O3 nanostructures during ultrahigh vacuum annealing. J. Phys. Chem. C 2013, 117, 1509–1517.

    CAS  Google Scholar 

  35. Woo, J.; Yang, S. Y.; Sa, Y. J.; Choi, W. Y.; Lee, M. H.; Lee, H. W.; Shin, T. J.; Kim, T. Y.; Joo, S. H. Promoting oxygen reduction reaction activity of Fe—N/C electrocatalysts by silica-coating-mediated synthesis for anion-exchange membrane fuel cells. Chem. Mater. 2018, 30, 6684–6701.

    CAS  Google Scholar 

  36. Zhuang, L. Z.; Ge, L.; Yang, Y. S.; Li, M. R.; Jia, Y.; Yao, X. D.; Zhu, Z. H. Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction. Adv. Mater. 2017, 29, 1606793.

    Google Scholar 

  37. Zhang, Z. P.; Sun, J. T.; Wang, F.; Dai, L. M. Efficient oxygen reduction reaction (ORR) catalysts based on single iron atoms dispersed on a hierarchically structured porous carbon framework. Angew. Chem. 2018, 130, 9176–9181.

    Google Scholar 

  38. Lei, G. C.; Tong, Y. W.; Shen, L. J.; Liu, F. J.; Xiao, Y. H.; Lin, W.; Zhang, Y. F.; Au, C.; Jiang, L. L. Highly active and sulfur-resistant Fe—N4 sites in porous carbon nitride for the oxidation of H2S into elemental sulfur. Small 2020, 16, 2003904.

    CAS  Google Scholar 

  39. Mohamed, A. Y.; Park, W. G.; Cho, D. Y. Chemical structure and magnetism of FeOx/Fe2O3 interface studied by X-ray absorption spectroscopy. Magnetochemistry 2020, 6, 33.

    CAS  Google Scholar 

  40. Schwanke, C.; Stein, H. S.; Xi, L. F.; Sliozberg, K.; Schuhmann, W.; Ludwig, A.; Lange, K. M. Correlating oxygen evolution catalysts activity and electronic structure by a high-throughput investigation of Ni1−yzFeyCrzOx. Sci. Rep. 2017, 7, 44192.

    CAS  Google Scholar 

  41. Liu, S. W.; Xiao, C. D.; Du, Z. H.; Marcelli, A.; Cibin, G.; Baccolo, G.; Zhu, Y. C.; Puri, A.; Maggi, V.; Xu, W. Iron speciation in insoluble dust from high-latitude snow: An X-ray absorption spectroscopy study. Condens. Matter 2018, 3, 47.

    CAS  Google Scholar 

  42. Thole, B. T.; van der Laan, G. Branching ratio in X-ray absorption spectroscopy. Phys. Rev. B 1988, 38, 3158–3171.

    CAS  Google Scholar 

  43. Cheng, Y. H.; Jan, J. C.; Chiou, J. W.; Pong, W. F.; Tsai, M. H.; Hseih, H. H.; Chang, Y. K.; Dann, T. E.; Chien, F. Z.; Tseng, P. K. et al. Electronic structure of the Fe-Cu-Nb-Si-B alloys by X-ray absorption spectroscopy. Appl. Phys. Lett. 2000, 77, 115–117.

    CAS  Google Scholar 

  44. Gallenkamp, C.; Kramm, U. I.; Proppe, J.; Krewald, V. Calibration of computational Mössbauer spectroscopy to unravel active sites in FeNC catalysts for the oxygen reduction reaction. Int. J. Quantum Chem. 2021, 121, e26394.

    CAS  Google Scholar 

  45. Ray, K.; Heims, F.; Schwalbe, M.; Nam, W. High-valent metal-oxo intermediates in energy demanding processes: From dioxygen reduction to water splitting. Curr. Opin. Chem. Biol. 2015, 25, 159–171.

    CAS  Google Scholar 

  46. Peng, L. S.; Yang, J.; Yang, Y. Q.; Qian, F. R.; Wang, Q.; Sun-Waterhouse, D.; Shang, L.; Zhang, T. R.; Waterhouse, G. I. N. Mesopore-rich Fe-N-C catalyst with FeN4-O-NC single-atom sites delivers remarkable oxygen reduction reaction performance in alkaline media. Adv. Mater. 2022, 34, 2202544.

    CAS  Google Scholar 

  47. Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2022, e202212653.

    Google Scholar 

  48. Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

    CAS  Google Scholar 

  49. Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

    CAS  Google Scholar 

  50. Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

    CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support from the key program of National Natural Science Foundation of China (No. 51831009) and the general program of National Natural Science Foundation of China (No. 52071285). We acknowledge the Center for Advanced Mössbauer Spectroscopy, Mössbauer Effect Data Center, Dalian Institute of Chemical Physics, CAS, for providing the Mössbauer measurement and analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shibo Xi or Hongge Pan.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, W., Yan, C., Gao, M. et al. Tuning coordination environment of iron ions to ensure ultra-high pseudocapacitive capability in iron oxide. Nano Res. 16, 6914–6921 (2023). https://doi.org/10.1007/s12274-023-5454-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5454-z

Keywords

Navigation