Skip to main content
Log in

Selectivity switching between CO and formate for CO2 reduction on Sb modified amorphous ZnO by electronic effect

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The adjustable intermediate binding capacity in electrocatalytic carbon dioxide (CO2) reduction is critical for varying the reaction pathways to desired products. Herein, we first report the synthesis of boron-doped amorphous zinc oxide with (B-a-ZnO-Sb) or without antimony nanoparticles embedding (B-a-ZnO) via one-step wet chemical method, which is easy to scale up by enlarging the vessel and increasing feeding. Sb successfully realizes the product switching from CO on B-a-ZnO to formate on B-a-ZnO-Sb. Both experimental and theoretical results reveal that Sb weakens the charge interaction on Zn atoms. Based on the moderate adsorption of ⋆COOH and strong adsorption of ⋆OCHO and ⋆HCOOH for B-a-ZnO, the foreign Sb weakens the adsorption of these intermediates and brings about a favor formate production instead of CO. This work points out a new direction for the synthesis of amorphous ZnO-based catalysts and provides advanced insights into the aimed selectivity switch for CO2 reduction by electronic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, W. J.; Li, L. F.; Xia, Q. N.; Hong, S.; Wang, L. J.; Yao, Z. B.; Wu, T. S.; Soo, Y. L.; Zhang, H.; Benedict Lo, T. W. et al. Lowering C-C coupling barriers for efficient electrochemical CO2 reduction to C2H4 by jointly engineering single Bi atoms and oxygen vacancies on CuO. Appl. Catal. B: Environ. 2022, 318, 121823

    CAS  Google Scholar 

  2. Xu, D. Z.; Li, K. K.; Jia, B. H.; Sun, W. P.; Zhang, W.; Liu, X.; Ma, T. Y. Electrocatalytic CO2 reduction towards industrial applications. Carbon Energy 2023, 5, e230

    CAS  Google Scholar 

  3. Dattila, F.; Seemakurthi, R. R.; Zhou, Y. C.; López, N. Modeling operando electrochemical CO2 reduction. Chem. Rev. 2022, 122, 11085–11130

    CAS  Google Scholar 

  4. Zhang, Z.; Wen, G. B.; Luo, D.; Ren, B. H.; Zhu, Y. F.; Gao, R.; Dou, H. Z.; Sun, G. R.; Feng, M.; Bai, Z. Y. et al. “Two ships in a bottle” design for Zn-Ag-O catalyst enabling selective and long-lasting CO2 elcctoreduction. J. Am. Chem. Soc. 2021, 143, 6855–6864

    CAS  Google Scholar 

  5. Liang, Z. F.; Wang, J. H.; Tang, P. Y.; Tang, W. Q.; Liu, L. J.; Shakouri, M.; Wang, X.; Llorca, J.; Zhao, S. L.; Heggen, M. et al. Molecular engineering to introduce carbonyl between nickel salophen active sites to enhance electrochemical CO2 reduction to methanol. Appl. Catal. B: Environ. 2022, 314, 121451

    CAS  Google Scholar 

  6. Zhao, X. L.; Huang, M.; Deng, B. W.; Li, K.; Li, F.; Dong, F. Interfacial engineering of In2O3/InN heterostructure with promoted charge transfer for highly efficient CO2 reduction to formate. Chem. Eng. J. 2022, 437, 135114

    CAS  Google Scholar 

  7. Chen, H. Y.; Wang, Z. J.; Wei, X. F.; Liu, S. Y.; Guo, P.; Han, P.; Wang, H. W.; Zhang, J. B.; Lu, X. Q.; Wei, B. J. Promotion of electrochemical CO2 reduction to ethylene on phosphorus-doped copper nanocrystals with stable Cuδ+ sites. Appl. Surf. Sci. 2021, 544, 148965

    CAS  Google Scholar 

  8. Chen, H. Y.; Wang, Z. J.; Cao, S. F.; Liu, S. Y.; Lin, X. J.; Zhang, Y.; Shang, Y. Z.; Zhu, Q. Y.; Zhou, S. N.; Wei, S. X. et al. Facile synthesis of an antimony-doped Cu/Cu2O catalyst with robust CO production in a broad range of potentials for CO2 electrochemical reduction. J. Mater. Chem. A 2022, 9, 23234–23242

    Google Scholar 

  9. Zhang, M. L.; Zhang, Z. D.; Zhao, Z. H.; Huang, H.; Anjum, D. H.; Wang, D. S.; He, J. H.; Huang, K. W. Tunable selectivity for electrochemical CO2 reduction by bimetallic Cu-Sn catalysts: Elucidating the roles of Cu and Sn. ACS Catal. 2022, 11, 11103–11108

    Google Scholar 

  10. Chen, M. X.; Wan, S. P.; Zhong, L. X.; Liu, D. B.; Yang, H. B.; Li, C. C.; Huang, Z. Q.; Liu, C. T.; Chen, J.; Pan, H. G. et al. Dynamic restructuring of Cu-doped SnS2 nanoflowers for highly selective electrochemical CO2 reduction to formate. Angew. Chem., Int. Ed. 2022, 60, 26233–26237

    Google Scholar 

  11. Birdja, Y. Y.; Pérez-Gallent, E.; Figueiredo, M. C.; Göttle, A. J.; Calle-Vallejo, F.; Koper, M. T. M. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 2019, 4, 732–745

    CAS  Google Scholar 

  12. Meng, D. L.; Zhang, M. D.; Si, D. H.; Mao, M. J.; Hou, Y.; Huang, Y. B.; Cao, R. Highly selective tandem electroreduction of CO2 to ethylene over atomically isolated nickel-nitrogen site/copper nanoparticle catalysts. Angew. Chem., Int. Ed. 2022, 60, 25485–25492

    Google Scholar 

  13. Xiao, X.; Gao, J. J.; Xi, S. B.; Lim, S. H.; Png, A. K. W.; Borgna, A.; Chu, W.; Liu, Y. Experimental and in situ DRIFTs studies on confined metallic copper stabilized Pd species for enhanced CO2 reduction to formate. Appl. Catal. B: Environ. 2022, 309, 121239

    CAS  Google Scholar 

  14. Chen, H. Y.; Zhang, Y.; Yang, T. F.; Shang, Y. Z.; Zhu, Q. Y.; Cao, S. F.; Lin, X. J.; Liu, S. Y.; Wei, S. X.; Wei, B. J. et al. Two birds with one stone: Large catalytic areas and abundant nitrogen sites inspired by fluorine doping contributing to CO2RR activity and selectivity. Dalton Trans. 2022, 51, 15883–15888

    CAS  Google Scholar 

  15. Ayyub, M. M.; Rao, C. N. R. Borocarbonitrides as metal-free electrocatalysts for the electrochemical reduction of CO2. Chem. Mater. 2022, 34, 6626–6635

    CAS  Google Scholar 

  16. Qiu, C.; Qian, K.; Yu, J.; Sun, M. Z.; Cao, S. F.; Gao, J. Q.; Yu, R. X.; Fang, L. Z.; Yao, Y. W.; Lu, X. Q. et al. MOF-transformed In2O3−x@C nanocorn electrocatalyst for efficient CO2 reduction to HCOOH. Nano-Micro Lett. 2022, 14, 167

    CAS  Google Scholar 

  17. Chang, S.; Xuan, Y. M.; Duan, J. J.; Zhang, K. High-performance electroreduction CO2 to formate at Bi/Nafion interface. Appl. Catal. B: Environ. 2022, 306, 121135

    CAS  Google Scholar 

  18. Ren, X. X.; Gao, Y. G.; Zheng, L. R.; Wang, Z. Y.; Wang, P.; Zheng, Z. K.; Liu, Y. Y.; Cheng, H. F.; Dai, Y.; Huang, B. B. Oxygen vacancy enhancing CO2 electrochemical reduction to CO on Ce-doped ZnO catalysts. Surf. Interfaces 2021, 23, 100923

    CAS  Google Scholar 

  19. Zhang, T. T.; Li, X. F.; Qiu, Y. L.; Su, P. P.; Xu, W. B.; Zhong, H. X.; Zhang, H. M. Multilayered Zn nanosheets as an electrocatalyst for efficient electrochemical reduction of CO2. J. Catal. 2018, 357, 154–162

    Google Scholar 

  20. Han, N.; Ding, P.; He, L.; Li, Y. Y.; Li, Y. G. Promises of main group metal-based nanostructured materials for electrochemical CO2 reduction to formate. Adv. Energy Mater. 2020, 10, 1902338

    CAS  Google Scholar 

  21. Geng, Z. G.; Kong, X. D.; Chen, W. W.; Su, H. Y.; Liu, Y.; Cai, F.; Wang, G. X.; Zeng, J. Oxygen vacancies in ZnO nanosheets enhance CO2 electrochemical reduction to CO. Angew. Chem., Int. Ed. 2018, 57, 6054–6059

    CAS  Google Scholar 

  22. Xiang, Q.; Li, F.; Wang, J. L.; Chen, W. L.; Miao, Q. S.; Zhang, Q. F.; Tao, P.; Song, C. Y.; Shang, W.; Zhu, H. et al. Heterostructure of ZnO nanosheets/Zn with a highly enhanced edge surface for efficient CO2 electrochemical reduction to CO. ACS Appl. Mater. Interfaces 2021, 13, 10837–10844

    CAS  Google Scholar 

  23. Luo, W.; Zhang, Q.; Zhang, J.; Moioli, E.; Zhao, K.; Züttel, A. Electrochemical reconstruction of ZnO for selective reduction of CO2 to CO. Appl. Catal. B: Environ. 2020, 273, 119060

    CAS  Google Scholar 

  24. Xue, L.; Zhang, C. J.; Shi, T.; Liu, S. P.; Zhang, H.; Sun, M.; Liu, F. R.; Liu, Y.; Wang, Y.; Gu, X. J. et al. Unraveling the improved CO2 adsorption and COOH⋆ formation over Cu-decorated ZnO nanosheets for CO2 reduction toward CO. Chem. Eng. J. 2023, 452, 139701.

    CAS  Google Scholar 

  25. Ren, B. H.; Zhang, Z.; Wen, G. B.; Zhang, X. W.; Xu, M.; Weng, Y. Y.; Nie, Y. H.; Dou, H. Z.; Jiang, Y.; Deng, Y. P. et al. Dual-scale integration design of Sn-ZnO catalyst toward efficient and stable CO2 electroreduction. Adv. Mater. 2022, 34, 2204637

    CAS  Google Scholar 

  26. Kang, M. P. L.; Kolb, M. J.; Calle-Vallejo, F.; Yeo, B. S. The role of undercoordinated sites on zinc electrodes for CO2 reduction to CO. Adv. Funct. Mater. 2022, 32, 2111597

    CAS  Google Scholar 

  27. Duan, Y. X.; Meng, F. L.; Liu, K. H.; Yi, S. S.; Li, S. J.; Yan, J. M.; Jiang, Q. Amorphizing of Cu nanoparticles toward highly efficient and robust electrocatalyst for CO2 reduction to liquid fuels with high faradaic efficiencies. Adv. Mater. 2018, 30, 1706194

    Google Scholar 

  28. Li, S. J.; Bao, D.; Shi, M. M.; Wulan, B. R.; Yan, J. M.; Jiang, Q. Amorphizing of Au nanoparticles by CeOx-RGO hybrid support towards highly efficient electrocatalyst for N2 reduction under ambient conditions. Adv. Mater. 2017, 29, 1700001

    Google Scholar 

  29. Zhou, Y. S.; Che, F. L.; Liu, M.; Zou, C. Q.; Liang, Z. Q.; De Luna, P.; Yuan, H. F.; Li, J.; Wang, Z. Q.; Xie, H. P. et al. Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nat. Chem. 2018, 10, 974–980

    CAS  Google Scholar 

  30. Teng, X.; Lu, J. M.; Niu, Y. L.; Gong, S. Q.; Xu, M. Z.; Meyer, T. J.; Chen, Z. F. Selective CO2 reduction to formate on a Zn-based electrocatalyst promoted by tellurium. Chem. Mater. 2022, 34, 6036–6047

    CAS  Google Scholar 

  31. Madhusudan, P.; Wang, Y.; Chandrashekar, B. N.; Wang, W. J.; Wang, J. W.; Miao, J.; Shi, R.; Liang, Y. X.; Mi, G. J.; Cheng, C. Nature inspired ZnO/ZnS nanobranch-like composites, decorated with Cu(OH)2 clusters for enhanced visible-light photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2019, 253, 379–390

    CAS  Google Scholar 

  32. Zhang, Q. M.; Zhou, X. X.; Kuang, Z. Y.; Xue, Y.; Li, C. J.; Zhu, M.; Mou, C. Y.; Chen, H. R. A bismuth species-decorated ZnO/p-Si photocathode for high selectivity of formate in CO2 photoelectrochemical reduction. ACS Sustainable Chem. Eng. 2022, 10, 2380–2387

    CAS  Google Scholar 

  33. Wang, X. T.; Shi, W. X.; Jin, Z.; Huang, W. F.; Lin, J.; Ma, G. S.; Li, S. Z.; Guo, L. Remarkable SERS activity observed from amorphous ZnO nanocages. Angew. Chem., Int. Ed. 2017, 56, 9851–9855

    CAS  Google Scholar 

  34. Wang, X. Y.; Xu, K. M.; Yan, X. Y.; Xiao, X. B.; Aruta, C.; Foglietti, V.; Ning, Z. J.; Yang, N. Amorphous ZnO/PbS quantum dots heterojunction for efficient responsivity broadband photodetectors. ACS Appl. Mater. Interfaces 2020, 12, 8403–8410

    CAS  Google Scholar 

  35. Cai, W. Z.; Chen, R.; Yang, H. B.; Tao, H. B.; Wang, H. Y.; Gao, J. J.; Liu, W.; Liu, S.; Hung, S. F.; Liu, B. Amorphous versus crystalline in water oxidation catalysis: A case study of NiFe alloy. Nano Lett. 2020, 20, 4278–4285

    CAS  Google Scholar 

  36. Hirata, A.; Kohara, S.; Asada, T.; Arao, M.; Yogi, C.; Imai, H.; Tan, Y. W.; Fujita, T.; Chen, M. W. Atomic-scale disproportionation in amorphous silicon monoxide. Nat. Commun. 2016, 7, 11591

    CAS  Google Scholar 

  37. Hussain, N.; Abdelkareem, M. A.; Alawadhi, H.; Begum, S.; Elsaid, K.; Olabi, A. G. Novel ternary CuO-ZnO-MoS2 composite material for electrochemical CO2 reduction to alcohols. J. Power Sources 2022, 549, 232128

    CAS  Google Scholar 

  38. Ma, X. Y.; Du, J. J.; Sun, H.; Ye, F. H.; Wang, X.; Xu, P. F.; Hu, C. G.; Zhang, L. P.; Liu, D. Boron, nitrogen co-doped carbon with abundant mesopores for efficient CO2 electroreduction. Appl. Catal. B: Environ 2021, 298, 120543

    CAS  Google Scholar 

  39. Li, F. W.; Xue, M. Q.; Li, J. Z.; Ma, X. L.; Chen, L.; Zhang, X. J.; MacFarlane, D. R.; Zhang, J. Unlocking the electrocatalytic activity of antimony for CO2 reduction by two-dimensional engineering of the bulk material. Angew. Chem., Int. Ed. 2017, 56, 14718–14722

    CAS  Google Scholar 

  40. Zhuang, T. T.; Liang, Z. Q.; Seifitokaldani, A.; Li, Y.; De Luna, P.; Burdyny, T.; Che, F. L.; Meng, F.; Min, Y.; Quintero-Bermudez, R. et al. Steering post-C-C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols. Nat. Catal. 2018, 1, 421–428

    CAS  Google Scholar 

  41. Khan, S. A.; Noreen, F.; Kanwal, S.; Iqbal, A.; Hussain, G. Green synthesis of ZnO and Cu-doped ZnO nanoparticles from leaf extracts of Abutilon indicum, Clerodendrum infortunatum, Clerodendrum inerme and investigation of their biological and photocatalytic activities. Mater. Sci. Eng. C 2018, 82, 46–59

    CAS  Google Scholar 

  42. Ma, G.; Liang, X. X.; Li, L. C.; Qiao, R.; Jiang, D. H.; Ding, Y.; Chen, H. F. Cu-doped zinc oxide and its polythiophene composites: Preparation and antibacterial properties. Chemosphere 2014, 100, 146–151

    CAS  Google Scholar 

  43. He, F.; He, Z. J.; Xie, J. L.; Li, Y. H. IR and Raman spectra properties of Bi2O3-ZnO-B2O3-BaO quaternary glass system. Am. J. Anal. Chem. 2014, 5, 1142–1150

    CAS  Google Scholar 

  44. Wang, K.; Liu, D. Y.; Deng, P. L.; Liu, L. M.; Lu, S. Y.; Sun, Z. J.; Ma, Y. M.; Wang, Y. K.; Li, M. T.; Xia, B. Y. et al. Band alignment in Zn2SnO4/SnO2 heterostructure enabling efficient CO2 electrochemical reduction. Nano Energy 2019, 64, 103954

    CAS  Google Scholar 

  45. Fan, Q. K.; Zhang, X.; Ge, X. H.; Bai, L. C.; He, D. S.; Qu, Y. T.; Kong, C. C.; Bi, J. L.; Ding, D. W.; Cao, Y. Q. et al. Manipulating Cu nanoparticle surface oxidation states tunes catalytic selectivity toward CH4 or C2+ products in CO2 electroreduction. Adv. Energy Mater. 2021, 11, 2101424

    CAS  Google Scholar 

  46. Geng, Z. G.; Cao, Y. J.; Chen, W. X.; Kong, X. D.; Liu, Y.; Yao, T.; Lin, Y. Regulating the coordination environment of Co single atoms for achieving efficient electrocatalytic activity in CO2 reduction. Appl. Catal. B: Environ. 2019, 240, 234–240

    CAS  Google Scholar 

  47. Zheng, W. Z.; Chen, F.; Zeng, Q.; Li, Z. J.; Yang, B.; Lei, L. C.; Zhang, Q. H.; He, F.; Wu, X. L.; Hou, Y. A universal principle to accurately synthesize atomically dispersed metal-N4 sites for CO2 electroreduction. Nano-Micro Lett. 2020, 12, 108

    CAS  Google Scholar 

  48. Zhang, Y. F.; Yang, R. J.; Li, H.; Zeng, Z. Y. Boosting electrocatalytic reduction of CO2 to HCOOH on Ni single atom anchored WTe2 monolayer. Small 2022, 18, 2203759

    CAS  Google Scholar 

  49. Guo, W. W.; Tan, X. X.; Bi, J. H.; Xu, L.; Yang, D. X.; Chen, C. J.; Zhu, Q. G.; Ma, J.; Tayal, A.; Ma, J. Y. et al. Atomic indium catalysts for switching CO2 electroreduction products from formate to CO. J. Am. Chem. Soc. 2021, 143, 6877–6885.

    CAS  Google Scholar 

Download references

Acknowledgements

Dedicated to the 70th Anniversary of China University of Petroleum. This work was supported by the National Natural Science Foundation of China (No. 22101300), Shandong Natural Science Foundation, China (Nos. ZR2020ME053 and ZR2020QB027), State Key Laboratory of Enhanced Oil Recovery of Open Fund Funded Project (No. 2022-KFKT-28), Major Special Projects of CNPC (No. 2021ZZ01-05), the Fundamental Research Funds for the Central Universities (Nos. 22CX03010A, 20CX06007A, and 22CX01002A-1), and the Entrepreneurship Practice Project of China University of Petroleum (No. 202203007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhaojie Wang, Baojun Wei or Xiaoqing Lu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Cao, S., Wang, L. et al. Selectivity switching between CO and formate for CO2 reduction on Sb modified amorphous ZnO by electronic effect. Nano Res. 16, 12144–12152 (2023). https://doi.org/10.1007/s12274-023-5570-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5570-9

Keywords

Navigation