Skip to main content
Log in

Strengthening synergistic effects between hard carbon and soft carbon enabled by connecting precursors at molecular level towards high-performance potassium ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Synergistic effects between hard carbons and soft carbons are proven to be helpful for improving the electrochemical performance of carbonaceous anode for potassium-ion batteries (PIBs). However, the phase separation of precursors limits the synergistic effects and improvement of electrochemical performance. Here, inspired by the esterification reaction, the precursors of two sorts of carbon are connected at the molecular level, which boosts the synergistic effects in hybrid carbon, resulting in excellent electrochemical kinetics and low charge/discharge voltage. Consequently, the hybrid carbon anode exhibited a high specific capacity of 121 mAh·g−1 at 3.2 A·g−1, a high-rate capability, and stable cycling performance. After 500 cycles at 1 A·g−1, the average capacity fading is only 0.078% per cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, Y. C.; Chen, Y. F.; Wang, J.; Wang, W.; Ding, Z. Y.; Li, L. Y.; Zhang, Y.; Deng, Y. D.; Wu, J. W.; Chen, Y. N. Hierarchical yolk-shell structured Li-rich cathode boosting cycling and voltage stabled LIBs. Nano Res. 2022, 15, 3178–3186.

    CAS  Google Scholar 

  2. Liu, Y. W.; Gao, C.; Dai, L.; Deng, Q. B.; Wang, L.; Luo, J. Y.; Liu, S.; Hu, N. The features and progress of electrolyte for potassium ion batteries. Small 2020, 16, 2004096.

    CAS  Google Scholar 

  3. Wang, H. H.; Artemova, A.; Yang, G.; Wang, H. S.; Zhang, L. L.; Cao, X.; Arkhipova, E.; Liu, J. L.; Huang, Y. Z.; Lin, J. Y. et al. Lotus root-like porous carbon for potassium ion battery with high stability and rate performance. J. Power Sources 2020, 466, 228303.

    CAS  Google Scholar 

  4. Liu, M. Q.; Wang, Y. H.; Wu, F.; Bai, Y.; Li, Y.; Gong, Y. T.; Feng, X.; Li, Y.; Wang, X. R.; Wu, C. Advances in carbon materials for sodium and potassium storage. Adv. Funct. Mater. 2022, 32, 2203117.

    CAS  Google Scholar 

  5. Zeng, X. Q.; Li, M.; Abd El-Hady, D.; Alshitari, W.; Al-Bogami, A. S.; Lu, J.; Amine, K. Commercialization of lithium battery technologies for electric vehicles. Adv. Energy Mater. 2019, 9, 1900161.

    Google Scholar 

  6. Zhu, Y. Y.; Wang, Y. H.; Wang, Y. T.; Xu, T. J.; Chang, P. Research progress on carbon materials as negative electrodes in sodium- and potassium-ion batteries. Carbon Energy 2022, 4, 1182–1213.

    CAS  Google Scholar 

  7. Xu, B. H.; Lu, N.; Zhang, B.; Qin, H. Z.; Cao, L.; Geng, H. B.; Ou, X. Regulating potassium ion receptivity by structure engineering in constructing carbon nano-network with optimized nitrogen species. Mater. Today Energy 2023, 31, 101223.

    CAS  Google Scholar 

  8. Lei, Y.; Zhang, S. W.; Dong, J. H.; Gao, Y. T.; Gao, C. W.; Wei, Y. J.; Qin, L.; Han, D.; Huang, D. Q.; Wei, G. D. et al. Potassium-enriched graphite for use as stable hybrid anodes in high-efficiency potassium batteries. Carbon 2023, 201, 1030–1037.

    CAS  Google Scholar 

  9. Liu, Y.; Lu, Y. X.; Xu, Y. S.; Meng, Q. S.; Gao, J. C.; Sun, Y. G.; Hu, Y. S.; Chang, B. B.; Liu, C. T.; Cao, A. M. Pitch-derived soft carbon as stable anode material for potassium ion batteries. Adv. Mater. 2020, 32, 2000505.

    CAS  Google Scholar 

  10. Li, D. P.; Sun, Q.; Zhang, Y. M.; Dai, X. Y.; Ji, F. J.; Li, K. K.; Yuan, Q. H.; Liu, X. J.; Ci, L. Fast and stable K-ion storage enabled by synergistic interlayer and pore-structure engineering. Nano Res. 2021, 14, 4502–4511.

    CAS  Google Scholar 

  11. Yu, K. H.; Wang, X. R.; Yang, H. Y.; Bai, Y.; Wu, C. Insight to defects regulation on sugarcane waste-derived hard carbon anode for sodium-ion batteries. J. Energy Chem. 2020, 55, 499–508.

    Google Scholar 

  12. Yu, C. X.; Li, Y.; Ren, H. X.; Qian, J.; Wang, S.; Feng, X.; Liu, M. Q.; Bai, Y.; Wu, C. Engineering homotype heterojunctions in hard carbon to induce stable solid electrolyte interfaces for sodium-ion batteries. Carbon Energy 2022, 5, e220.

    Google Scholar 

  13. Jian, Z. L.; Hwang, S.; Li, Z. F.; Hernandez, A. S.; Wang, X. F.; Xing, Z. Y.; Su, D.; Ji, X. L. Hard-soft composite carbon as a long-cycling and high-rate anode for potassium-ion batteries. Adv. Funct. Mater. 2017, 27, 1700324.

    Google Scholar 

  14. Wang, M. Y.; Zhu, Y. Y.; Zhang, Y.; Yang, T.; Duan, J. Y.; Wang, C. Y. Cost-effective hard-soft carbon composite anodes with promising potassium ions storage performance. Electrochim. Acta 2021, 368, 137649.

    CAS  Google Scholar 

  15. Mahmood, N.; Tang, T. Y.; Hou, Y. L. Nanostructured anode materials for lithium ion batteries: Progress, challenge and perspective. Adv. Energy Mater. 2016, 6, 1600374.

    Google Scholar 

  16. Wang, F. X.; Wu, X. W.; Li, C. Y.; Zhu, Y. S.; Fu, L. J.; Wu, Y. P.; Liu, X. Nanostructured positive electrode materials for post-lithium ion batteries. Energy Environ. Sci. 2016, 9, 3570–3611.

    CAS  Google Scholar 

  17. Dong, Y. M.; Yu, R. N.; Zhao, B.; Gong, Y. S.; Jia, H. R.; Ma, Z. W.; Gao, H. Z.; Tan, Z. Revival of insulating polyethylenimine by creatively carbonizing with perylene into highly crystallized carbon dots as the cathode interlayer for high-performance organic solar cells. ACS Appl. Mater. Interfaces 2022, 14, 1280–1289.

    CAS  Google Scholar 

  18. Guo, L.; Jia, S.; Diercks, C. S.; Yang, X. J.; Alshmimri, S. A.; Yaghi, O. M. Amidation, esterification, and thioesterification of a carboxyl-functionalized covalent organic framework. Angew. Chem., Int. Ed. 2020, 132, 2039–2043.

    Google Scholar 

  19. Al-AbdulRazzak, S.; Lofgren, E. A.; Jabarin, S. A. End-group determination in poly(ethylene terephthalate) by infrared spectroscopy. Polym. Int. 2002, 51, 174–182.

    CAS  Google Scholar 

  20. Shi, F. F.; Zhao, H.; Liu, G.; Ross, P. N.; Somorjai, G. A.; Komvopoulos, K. Identification of diethyl 2,5-dioxahexane dicarboxylate and polyethylene carbonate as decomposition products of ethylene carbonate based electrolytes by Fourier transform infrared spectroscopy. J. Phys. Chem. C 2014, 118, 14732–14738.

    CAS  Google Scholar 

  21. Wei, C. L.; Tan, L. W.; Zhang, Y. C.; Xi, B. J.; Xiong, S. L.; Feng, J. K. MXene/organics heterostructures enable ultrastable and high-rate lithium/sodium batteries. ACS Appl. Mater. Interfaces 2022, 14, 2979–2988.

    CAS  Google Scholar 

  22. Su, H. P.; Li, X. R.; Liu, C. W.; Shang, Y. Z.; Liu, H. L. Scalable synthesis of micrometer-sized porous silicon/carbon composites for high-stability lithium-ion battery anodes. Chem. Eng. J. 2023, 451, 138394.

    CAS  Google Scholar 

  23. Tu, J. W.; Tong, H. G.; Zeng, X. H.; Chen, S.; Wang, C. L.; Zheng, W.; Wang, H.; Chen, Q. W. Modification of porous N-doped carbon with sulfonic acid toward high-ICE/capacity anode material for potassium-ion batteries. Adv. Funct. Mater. 2022, 32, 2204991.

    CAS  Google Scholar 

  24. Niu, P.; Yang, Y.; Li, Z. Q.; Ding, G. H.; Wei, L. Z.; Yao, G.; Niu, H. L.; Min, Y. L.; Zheng, F. C.; Chen, Q. W. Rational design of a hollow porous structure for enhancing diffusion kinetics of K ions in edge-nitrogen doped carbon nanorods. Nano Res. 2022, 15, 8109–8117.

    CAS  Google Scholar 

  25. Ma, G. Y.; Li, C. J.; Liu, F.; Majeed, M. K.; Feng, Z. Y.; Cui, Y. H.; Yang, J.; Qian, Y. T. Metal-organic framework-derived Co0.85Se nanoparticles in N-doped carbon as a high-rate and long-lifespan anode material for potassium ion batteries. Mater. Today Energy 2018, 10, 241–248.

    Google Scholar 

  26. Dong, R. Q.; Wu, F.; Bai, Y.; Li, Q. H.; Yu, X. Q.; Li, Y.; Ni, Q.; Wu, C. Tailoring defects in hard carbon anode towards enhanced Na storage performance. Energy Mater. Adv. 2022, 2022, 9896218.

    Google Scholar 

  27. Sun, F.; Wang, H.; Qu, Z. B.; Wang, K. F.; Wang, L. J.; Gao, J. H.; Gao, J. M.; Liu, S. Q.; Lu, Y. F. Carboxyl-dominant oxygen rich carbon for improved sodium ion storage: Synergistic enhancement of adsorption and intercalation mechanisms. Adv. Energy Mater. 2021, 11, 2002981.

    CAS  Google Scholar 

  28. Smith, M.; Scudiero, L.; Espinal, J.; McEwen, J. S.; Garcia-Perez, M. Improving the deconvolution and interpretation of XPS spectra from chars by ab initio calculations. Carbon 2016, 110, 155–171.

    CAS  Google Scholar 

  29. Yang, F.; Ma, X. Y.; Cai, W. B.; Song, P.; Xu, W. L. Nature of oxygen-containing groups on carbon for high-efficiency electrocatalytic CO2 reduction reaction. J. Am. Chem. Soc. 2019, 141, 20451–20459.

    CAS  Google Scholar 

  30. Kang, M. M.; Zhao, H. Q.; Ye, J. Q.; Song, W.; Shen, H. T.; Mi, J.; Li, Z. Adsorption dominant sodium storage in three-dimensional coal-based graphite microcrystal/graphene composites. J. Mater. Chem. A 2019, 7, 7565–7572.

    CAS  Google Scholar 

  31. Feng, X.; Bai, Y.; Liu, M. Q.; Li, Y.; Yang, H. Y.; Wang, X. R.; Wu, C. Untangling the respective effects of heteroatom-doped carbon materials in batteries, supercapacitors and the ORR to design high performance materials. Energy Environ. Sci. 2021, 14, 2036–2089.

    CAS  Google Scholar 

  32. Chong, S. K.; Chen, Y. Z.; Zheng, Y.; Tan, Q.; Shu, C. Y.; Liu, Y. N.; Guo, Z. P. Potassium ferrous ferricyanide nanoparticles as a high capacity and ultralong life cathode material for nonaqueous potassium-ion batteries. J. Mater. Chem. A 2017, 5, 22465–22471.

    CAS  Google Scholar 

  33. Tong, H. G.; Wang, C. L.; Lu, J.; Chen, S.; Yang, K.; Huang, M. X.; Yuan, Q.; Chen, Q. W. Energetic metal-organic frameworks derived highly nitrogen-doped porous carbon for superior potassium storage. Small 2020, 16, e2002771.

    Google Scholar 

  34. Cao, J. H.; Zhong, J.; Xu, H. J.; Li, S. Y.; Deng, H. L.; Wang, T.; Fan, L.; Wang, X. H.; Wang, L.; Zhu, J. et al. N/S co-doped carbon nanosheet bundles as high-capacity anode for potassium-ion battery. Nano Res. 2022, 15, 2040–2046.

    CAS  Google Scholar 

  35. Chen, C. J.; Wang, Z. G.; Zhang, B.; Miao, L.; Cai, J.; Peng, L. F.; Huang, Y. Y.; Jiang, J. J.; Huang, Y. H.; Zhang, L. N. et al. Nitrogen-rich hard carbon as a highly durable anode for high-power potassium-ion batteries. Energy Storage Mater. 2017, 8, 161–168.

    Google Scholar 

  36. Ge, X. F.; Liu, S. H.; Qiao, M.; Du, Y. C.; Li, Y. F.; Bao, J. C.; Zhou, X. S. Enabling superior electrochemical properties for highly efficient potassium storage by impregnating ultrafine Sb nanocrystals within nanochannel-containing carbon nanofibers. Angew. Chem., Int. Ed. 2019, 58, 14578–14583.

    CAS  Google Scholar 

  37. Yang, J. L.; Ju, Z. C.; Jiang, Y.; Xing, Z.; Xi, B. J.; Feng, J. K.; Xiong, S. L. Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv. Mater. 2018, 30, 1700104.

    Google Scholar 

  38. Xiao, N.; Zhang, X. Y.; Liu, C.; Wang, Y. W.; Li, H. Q.; Qiu, J. S. Coal-based carbon anodes for high-performance potassium-ion batteries. Carbon 2019, 147, 574–581.

    CAS  Google Scholar 

  39. Wu, X.; Lam, C. W. K.; Wu, N. Q.; Pang, S. S.; Xing, Z.; Zhang, W.; Ju, Z. C. Multiple templates fabrication of hierarchical porous carbon for enhanced rate capability in potassium-ion batteries. Mater. Today Energy 2019, 11, 182–191.

    CAS  Google Scholar 

  40. Bommier, C.; Surta, T. W.; Dolgos, M.; Ji, X. L. New mechanistic insights on Na-ion storage in nongraphitizable carbon. Nano Lett. 2015, 15, 5888–5892.

    CAS  Google Scholar 

  41. Jian, Z. L.; Xing, Z. Y.; Bommier, C.; Li, Z. F.; Ji, X. L. Hard carbon microspheres: Potassium-ion anode versus sodium-ion anode. Adv. Energy Mater. 2016, 6, 1501874.

    Google Scholar 

  42. Yu, F.; Huang, T.; Zhang, P. P.; Tao, Y. P.; Cui, F. Z.; Xie, Q. J.; Yao, S. Z.; Wang, F. X. Design and synthesis of electrode materials with both battery-type and capacitive charge storage. Energy Storage Mater. 2019, 22, 235–255.

    Google Scholar 

Download references

Acknowledgements

This work was supported by High-quality Development Project of Ministry of Industry and Information Technology of China (No. TC210H041), the Hundred Talents Program, the National Natural Science Foundation of China (No. 51872304), and Ningbo S&T Innovation 2025 Major Special Program (Nos. 2018B10024, 2019B10044, 2020Z101, and 2022Z022).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Yin or Haiyong He.

Electronic Supplementary Material

12274_2023_5853_MOESM1_ESM.pdf

Strengthening synergistic effects between hard carbon and soft carbon enabled by connecting precursors at molecular level towards high-performance potassium ion batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Cheng, B., Du, Q. et al. Strengthening synergistic effects between hard carbon and soft carbon enabled by connecting precursors at molecular level towards high-performance potassium ion batteries. Nano Res. 16, 10985–10991 (2023). https://doi.org/10.1007/s12274-023-5853-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5853-1

Keywords

Navigation