Skip to main content
Log in

A lactic acid bacterium isolated from kimchi ameliorates intestinal inflammation in DSS-induced colitis

  • Microbial Pathogenesis and Host-Microbe Interaction
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Some species of lactic acid bacteria have been shown to be beneficial in inflammatory bowel disease (IBD). In the present study, a strain of lactic acid bacterium (Lactobacillus paracasei LS2) was isolated from the Korean food, kimchi, and was shown to inhibit the development of experimental colitis induced by dextran sulfate sodium (DSS). To investigate the role of LS2 in IBD, mice were fed DSS in drinking water for seven days along with LS2 bacteria which were administered intragastrically to some of the mice, while phosphate-buffered saline (PBS) was administered to others (the controls). The administration of LS2 reduced body weight loss and increased survival, and disease activity indexes (DAI) and histological scores indicated that the severity of colitis was significantly reduced. The production of inflammatory cytokines and myeloperoxidase (MPO) activity also decreased. Flow cytometry analysis showed that the number of Th1 (IFN-γ) population cells was significantly reduced in the LS2-administered mice compared with the controls. The administration of LS2 induced the increase of CD4+FOXP3+ Treg cells, which are responsible for IL-10. Numbers of macrophages (CD11b+ F4/80+), and neutrophils (CD11b+ Gr-1+) among lamina propria lymphocytes (LPL) were also reduced. These results indicate that LS2 has an anti-inflammatory effect and ameliorates DSS-induced colitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atreya, R. and Neurath, M.F. 2008. New therapeutic strategies for treatment of inflammatory bowel disease. Mucosal. Immunol. 1, 175–182.

    Article  CAS  PubMed  Google Scholar 

  • Blumberg, R.S., Saubermann, L.J., and Strober, W. 1999. Animal models of mucosal inflammation and their relation to human inflammatory bowel disease. Curr. Opin. Immunol. 11, 648–656.

    Article  CAS  PubMed  Google Scholar 

  • Bouma, G. and Strober, W. 2003. The immunological and genetic basis of inflammatory bowel disease. Nat. Rev. Immunol. 3, 521–533.

    Article  CAS  PubMed  Google Scholar 

  • Cho, Y.H., Hong, S.M., and Kim, C.H. 2013. Isolation and characterization of lactic acid bacteria from kimchi, korean traditional fermented food to apply into fermented dairy products. Korean J. Food Sci. An. 33, 75–82.

    Article  CAS  Google Scholar 

  • Couper, K.N., Blount, D.G., and Riley, E.M. 2008. IL-10: the master regulator of immunity to infection. J. Immunol. 180, 5771–5777.

    Article  CAS  PubMed  Google Scholar 

  • Daniel, C., Poiret, S., Goudercourt, D., Dennin, V., Leyer, G., and Pot, B. 2006. Selecting lactic acid bacteria for their safety and functionality by use of a mouse colitis model. Environ. Microb. 72, 5799–5805.

    Article  CAS  Google Scholar 

  • de Moreno de LeBlanc, A., Del Carmen, S., Zurita-Turk, M., Santos Rocha, C., Van de Guchte, M., Azevedo, V., Miyoshi, A., and Le-Blanc, J.G. 2011. Importance of IL-10 modulation by probiotic microorganisms in gastrointestinal inflammatory diseases. ISRN Gastroenterol. 2011, 892971.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dohi, T., Fujihashi, K., Rennert, P.D., Iwatani, K., Kiyono, H., and McGhee, J.R. 1999. Hapten-induced colitis is associated with colonic patch hypertrophy and T helper cell 2-type responses. J. Exp. Med. 189, 1169–1180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiocchi, C. 1998. Inflammatory bowel disease: etiology and pathogenesis. Gastroenterology 115, 182–205.

    Article  CAS  PubMed  Google Scholar 

  • Foligne, B., Nutten, S., Steidler, L., Dennin, V., Goudercourt, D., Mercenier, A., and Pot, B. 2006. Recommendations for improved use of the murine TNBS-induced colitis model in evaluating antiinflammatory properties of lactic acid bacteria: technical and microbiological aspects. Digest. Dis. Sci. 51, 390–400.

    Article  PubMed  Google Scholar 

  • Hibi, T. and Ogata, H. 2006. Novel pathophysiological concepts of inflammatory bowel disease. J. Gastroenterol. 41, 10–16.

    Article  PubMed  Google Scholar 

  • Jo, S.G., Noh, E.J., Lee, J.Y., Kim, G., Choi, J.H., Lee, M.E., Song, J.H., Chang, J.Y., and Park, J.H. 2016. Lactobacillus curvatus WiKim38 isolated from kimchi induces IL-10 production in dendritic cells and alleviates DSS-induced colitis in mice. J. Microbiol. 54, 503–509.

    Article  CAS  PubMed  Google Scholar 

  • Kim, H.Y., Song, J.L., Chang, H.K., Kang, S.A., and Park, K.Y. 2014. Kimchi protects against azoxymethane/dextran sulfate sodiuminduced colorectal carcinogenesis in mice. J. Med. Food. 17, 833–841.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kinoshita, K., Hori, M., Fujisawa, M., Sato, K., Ohama, T., Momotani, E., and Ozaki, H. 2006. Role of TNF-α in muscularis inflammation and motility disorder in a TNBS-induced colitis model: clues from TNF-α-deficient mice. Neurogastroent. Motil. 18, 578–588.

    Article  CAS  Google Scholar 

  • Kopp-Hoolihan, L. 2001. Prophylactic and therapeutic uses of probiotics: a review. J. Am. Diet. Assoc. 101, 229–241.

    Article  CAS  PubMed  Google Scholar 

  • Krawisz, J.E., Sharon, P., and Stenson, W.F. 1984. Quantitative assay for acute intestinal inflammation based on myeloperoxidase activity. Gastroenterology 87, 1344–1350.

    CAS  PubMed  Google Scholar 

  • Lahtinen, S., Ouwehand, A.C., Salminen, S., and von Wright, A. 2011. Lactic acid bacteria: microbiological and functional aspects. pp. 187–212. CRC Press, USA.

    Google Scholar 

  • Liu, Y.W., Su, Y.W., Ong, W.K., Cheng, T.H., and Tsai, Y.C. 2011. Oral administration of Lactobacillus plantarum K68 ameliorates DSS-induced ulcerative colitis in BALB/c mice via the antiinflammatory and immunomodulatory activities. Int. Immunopharmacol. 11, 2159–2166.

    Article  CAS  PubMed  Google Scholar 

  • Masoodi, I., Tijjani, B.M., Wani, H., Hassan, N.S., Khan, A.B., and Hussain, S. 2011. Biomarkers in the management of ulcerative colitis: a brief revie. Ger. Med. Sci. 9, Doc03.

    PubMed  PubMed Central  Google Scholar 

  • Moore, K.W., de Waal Malefyt, R., Coffman, R.L., and O’Garra, A. 2001. Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol. 19, 683–765.

    Article  CAS  PubMed  Google Scholar 

  • Murthy, S.N.S., Cooper, H.S., Shim, H., Shah, R.S., Ibrahim, S.A., and Sedergran, D.J. 1993. Treatment of dextran sulfate sodiuminduced murine colitis by intracolonic cyclosporin. Digest. Dis. Sci. 38, 1722–1734.

    Article  CAS  PubMed  Google Scholar 

  • O’Shea, J.J., Ma, A., and Lipsky, P. 2002. Cytokines and autoimmunity. Nat. Rev. Immunol. 2, 37–45.

    Article  PubMed  Google Scholar 

  • Okayasu, I., Hatakeyama, S., Yamada, M., Ohkusa, T., Inagaki, Y., and Nakaya, R. 1990. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology 98, 694–702.

    Article  CAS  PubMed  Google Scholar 

  • Pagnini, C., Saeed, R., Bamias, G., Arseneau, K.O., Pizarro, T.T., and Cominelli, F. 2010. Probiotics promote gut health through stimulation of epithelial innate immunity. Proc. Natl. Acad. Sci. USA 107, 454–459.

    Article  CAS  PubMed  Google Scholar 

  • Palmen, M., Dijkstra, C.D., Ende, M.B., Pena, A.S., and Rees, E.P. 1995. Anti-CD11b/CD18 antibodies reduce inflammation in acute colitis in rats. Clin. Exp. Immunol. 101, 351–356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelinescu, D.R., Sasarman, E., Chifiriuc, M.C., Stoica, I., Nohit, A.M., Avram, I., Serbancea, F., and Dimov, T.V. 2009. Isolation and identification of some Lactobacillus and Enterococcus strains by a polyphasic taxonomical approach. Rom. Biotech. Lett. 14, 4225–4233.

    Google Scholar 

  • Podolsky, D.K. 1991. Inflammatory bowel disease. New Engl. J. Med. 325, 928–937.

    Article  CAS  PubMed  Google Scholar 

  • Sanders, M.E. 2003. Probiotics: considerations for human health. Nutr. Rev. 61, 91–99.

    Article  PubMed  Google Scholar 

  • Santucci, L., Agostini, M., Bruscoli, S., Mencarelli, A., Ronchetti, S., Ayroldi, E., Morelli, A., Baldoni, M., and Riccardi, C. 2007. GITR modulates innate and adaptive mucosal immunity during the development of experimental colitis in mice. Gut 56, 52–60.

    Article  CAS  PubMed  Google Scholar 

  • Saraiva, M. and O’Garra, A. 2010. The regulation of IL-10 production by immune cells. Nat. Rev. Immunol. 10, 170–181.

    Article  CAS  PubMed  Google Scholar 

  • Schaer, C., Hiltbrunner, S., Ernst, B., Mueller, C., Kurrer, M., Kopf, M., and Harris, N.L. 2011. HVEM signalling promotes colitis. PLoS One 6, e18495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schenk, M., Bouchon, A., Seibold, F., and Mueller, C. 2007. TREM-1-expressing intestinal macrophages crucially amplify chronic inflammation in experimental colitis and inflammatory bowel diseases. J. Clin. Invest. 117, 3097–3106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultz, M., Veltkamp, C., Dieleman, L.A., Grenther, W.B., Wyrick, P.B., Tonkonogy, S.L., and Sartor, R.B. 2002. Lactobacillus plantarum 299V in the treatment and prevention of spontaneous colitis in interleukin-10-deficient mice. Inflamm. Bowel Dis. 8, 71–80.

    Article  PubMed  Google Scholar 

  • Stow, J.L., Low, P.C., Offenhauser, C., and Sangermani, D. 2009. Cytokine secretion in macrophages and other cells: pathways and mediators. Immunobiology 214, 601–612.

    Article  CAS  PubMed  Google Scholar 

  • Strober, W., Fuss, I.J., and Blumberg, R.S. 2002. The immunology of mucosal models of inflammation 1. Annu. Rev. Immunol. 20, 495–549.

    Article  CAS  PubMed  Google Scholar 

  • Takamura, T., Harama, D., Fukumoto, S., Nakamura, Y., Shimokawa, N., Ishimaru, K., Ikegami, S., Makino, S., Kitamura, M., and Nakao, A. 2011. Lactobacillus bulgaricus OLL1181 activates the aryl hydrocarbon receptor pathway and inhibits colitis. Immunol. Cell Biol. 89, 817–822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanoue, T., Atarashi, K., and Honda, K. 2016. Development and maintenance of intestinal regulatory T cells. Nat. Rev. Immunol. 16, 295–309.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., Anders, R.A., Wang, Y., Turner, J.R., Abraham, C., Pfeffer, K., and Fu, Y.X. 2005. The critical role of LIGHT in promoting intestinal inflammation and Crohn’s disease. J. Immunol. 174, 8173–8182.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Liu, X.P., Zhao, Z.B., Chen, J.H., and Yu, C.G. 2011. Expression of CD4+ forkhead box P3 (FOXP3)+ regulatory T cells in inflammatory bowel disease. J. Dig. Dis. 12, 286–294.

    Article  CAS  PubMed  Google Scholar 

  • Wirtz, S., Neufert, C., Weigmann, B., and Neurath, M.F. 2007. Chemically induced mouse models of intestinal inflammation. Nat. Protoc. 2, 541–546.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Choon-Soo Jeong or Gajin Jeong.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, JS., Joe, I., Rhee, P.D. et al. A lactic acid bacterium isolated from kimchi ameliorates intestinal inflammation in DSS-induced colitis. J Microbiol. 55, 304–310 (2017). https://doi.org/10.1007/s12275-017-6447-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-017-6447-y

Keywords

Navigation