Skip to main content

Advertisement

Log in

Relationship of serum isoflavone, insulin and adiponectin levels with breast cancer risk

  • Original Article
  • Published:
Breast Cancer Aims and scope Submit manuscript

Abstract

Background

Obesity is one of the well-known risk factors of breast cancer. Accumulating evidence suggests that adiponectin, an obesity-related hormone, is inversely associated with breast cancer risk, particularly in postmenopausal women. Obesity is also associated with high levels of insulin. In addition, studies have suggested that the soy isoflavones present in the traditional Japanese diet have been associated with decreased risk of breast cancer. However, there is no study that has assessed associations between serum levels of isoflavones, insulin, adiponectin and the risk of breast cancer all together with menopausal status.

Methods

In a case–control study of 63 histologically confirmed breast cancer patients and 76 controls, serum isoflavone, insulin, and high-molecular-weight (HMW) adiponectin levels and breast cancer risk were examined for their association with breast cancer risk after adjustment for various risk factors.

Results

Women in the highest tertile of serum HMW adiponectin levels were associated with a statistically significant decreased risk for breast cancer compared with women in the lowest tertile [odds ratio (OR), 0.09; 95 % confidence interval (CI) 0.03–0.33]. This association was observed in postmenopausal women (OR 0.06; 95 % CI 0.01–0.28), but not in premenopausal women. The observed associations were independent of possible effects of insulin, body mass index, and known risk factors for breast cancer. Serum isoflavones and insulin levels were not associated with breast cancer risk.

Conclusions

This study suggests that high serum HMW adiponectin levels are significantly associated with a decreased risk for breast cancer. Our result support the hypothesis that serum adiponectin may act as a potential biomarker for breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hirabayashi Y, Zhang M. Comparison of time trends in breast cancer incidence (1973–2002) in Asia, from cancer incidence in five continents, vols IV–IX. Jpn J Clin Oncol. 2009;39:411–2.

    Article  PubMed  Google Scholar 

  2. Matsuda T, Marugame T, Kamo K, Katanoda K, Ajiki W, Soube T. Cancer incidence and incidence rates in Japan 2005: based on data from 12 population-based cancer registries in the monitoring of cancer incidence in Japan (MCIJ) project. Jpn J Clin Oncol. 2011;41:139–47.

    Article  PubMed  Google Scholar 

  3. Yoshiike N, Seino F, Tajima S, Arai Y, Kawano M, Furuhata T, et al. Twenty-year changes in the prevalence of overweight in Japanese adults: the national nutrition survey 1976–95. Obes Rev. 2002;3:183–90.

    Article  CAS  PubMed  Google Scholar 

  4. Adlercreutz H, Bannwart C, Wahala K, Makela T, Brunow G, Hase T, et al. Inhibition of human aromatase by mammalian lignans and isoflavonoids phytoestrogens. J Steroid Biochem Mol Biol. 1993;44:147–53.

    Article  CAS  PubMed  Google Scholar 

  5. Akiyama T, Ishida J, Nakagawa S, Ogawara H, Watanabe S, Itoh N, et al. Genistein, a specific inhibitor of tyrosine-specific kinases. J Biol Chem. 1987;262:5592–5.

    CAS  PubMed  Google Scholar 

  6. Kuiper GG, Lemmen JG, Carlsson B, Corton JC, Safe SH, Saag PT, et al. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology. 1998;139:4252–63.

    CAS  PubMed  Google Scholar 

  7. Onozawa M, Fukuda K, Ohtani M, Akaza H, Sugimura T, Wakabayashi K. Effects of soybean isoflavones on cell growth and apoptosis of the human prostatic cancer cell line LNCaP. J Clin Oncol. 1998;28:360–3.

    CAS  Google Scholar 

  8. Key TJ, Verkasalo PK, Banks E. Epidemiology of breast cancer. Lancet. 2001;2:133–40.

    Article  CAS  PubMed  Google Scholar 

  9. Morimoto LM, White E, Chen Z, Chlebowski RT, Hays J, Kuller L, et al. Obesity, body b size, and risk of postmenopausal breast cancer: the women’s Health Initiative (United States). Cancer Causes Control. 2002;13:741–51.

    Article  PubMed  Google Scholar 

  10. Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet. 2008;371:569–78.

    Article  PubMed  Google Scholar 

  11. Bruning PF, Bonfrer JM, van Noord PA, Hart AA, de Jong-Bakker M, Nooijen WJ. Insulin resistance and breast-cancer risk. Int J Cancer. 1992;52:511–6.

    Article  CAS  PubMed  Google Scholar 

  12. Del Goudice ME, Fantus IG, Ezzxat S, McKeown-Eyssen G, Page D, Goodwin PJ. Insulin and related factors in premenopausal breast cancer risk. Breast Cancer Res Treat. 1998;47:111–20.

    Article  Google Scholar 

  13. Goodwin PJ, Ennis M, Pritchard KI, Trudeau ME, Koo J, Madarnas Y, et al. Fasting insulin and outcome in early-stage breast cancer: results of a prospective cohort study. J Clin Oncol. 2002;20:42–51.

    Article  CAS  PubMed  Google Scholar 

  14. Stefan N, Vozarova B, Funahashi T, Matsuzawa Y, Weyer C, Lindsay RS, et al. Plasma adiponectin concentration is associated with skeletal muscle insulin receptor tyrosine phosphorylation, and low plasma concentration precedes a decrease in whole-body insulin sensitivity in humans. Diabetes. 2002;51:1884–8.

    Article  CAS  PubMed  Google Scholar 

  15. Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun. 1999;257:79–83.

    Article  CAS  PubMed  Google Scholar 

  16. Hotta K, Funahashi T, Arita Y, Takahashi M, Matsuda M, Okamoto Y, et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol. 2000;20:1595–9.

    Article  CAS  PubMed  Google Scholar 

  17. Yang WS, Lee WJ, Funahashi T, Tanaka S, Matsuzawa Y, Chao CL, et al. Plasma adiponectin levels in overweight and obese Asians. Obes Res. 2002;10:1104–10.

    Article  CAS  PubMed  Google Scholar 

  18. Rose DP, Komninou D, Stephensen GD. Obesity, adipocytokines, and insulin resistance in breast cancer. Obes Rev. 2004;5:153–65.

    Article  CAS  PubMed  Google Scholar 

  19. Mantzoros C, Petridou E, Dessypris N, Chavelas C, Dalamaga M, Alexe DM, et al. Adiponectin and breast cancer risk. J Clin Endocrinol Metab. 2004;89:1102–7.

    Article  CAS  PubMed  Google Scholar 

  20. Miyoshi Y, Funahashi T, Kihara S, Taguchi T, Tamaki Y, Matsuzawa Y, et al. Association of serum adiponectin levels with breast cancer risk. Clin Cancer Res. 2003;9:5699–704.

    CAS  PubMed  Google Scholar 

  21. Chen DC, Chung YF, Yeh YT, Chaung HC, Kuo FC, Fu OY, et al. Serum adiponectin and leptin levels in Taiwanese breast cancer patients. Cancer Lett. 2005;237:109–14.

    Article  CAS  PubMed  Google Scholar 

  22. Trujillo ME, Scherer PE. Adiponectin-journey from an adipocyte secretory protein to biomarker of the metabolic syndrome. J Intern Med. 2005;257:167–75.

    Article  CAS  PubMed  Google Scholar 

  23. Clavel-Chapelon F, E3N-EPIC Group. Differential effects of reproductive factors on the risk of pre- and postmenopausal breast cancer. Results from a large cohort of French women. Br J Cancer. 2002;86:723–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. van der Brandt PA, Spiegelman D, Yaun SS, Adami HO, Beeson L, Folsom S, et al. Pooled analysis of prospective cohort studies on height, weight, and breast cancer risk. Am J Epidemiol. 2000;152:514–27.

    Article  PubMed  Google Scholar 

  25. Kang JH, Yu BY, Youn DS. Relationship of serum adiponectin and resistin levels with breast cancer risk. J Korean Med Sci. 2007;22:117–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Grossmann ME, Nkhata KJ, Mizuno NK, Ray A, Cleary MP. Effects of adiponectin on breast cancer cell growth and signaling. Br J Cancer. 2008;98:370–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Körner A, Pazaitou-Panayioyou K, Kelesidis I, Kelesidis I, Williams CJ, Kaprara A, et al. Total and high-molecular-weight adiponectin in breast cancer: in vitro and in vivo studies. J Clin Endocrinol Metab. 2007;92:1041–8.

    Article  CAS  PubMed  Google Scholar 

  28. Chen DC, Chung YF, Yeh YT, Chaung HC, Kuo FC, Fu OY, et al. Serum adiponectin and leptin levels in Taiwanese breast cancer patients. Cancer Lett. 2006;237:109–14.

    Article  CAS  PubMed  Google Scholar 

  29. Gulcelik MA, Colakoglu K, Dincer H, Dogan L, Yenidogan E, Gulcelik NE, et al. Associations between adiponectin and two different cancers: breast and colon. Asian Pacific J Cancer Prev. 2012;13:395–8.

    Article  Google Scholar 

  30. Tworoger SS, Eliassen AH, Kelesidis T, Colditz GA, Willett WC, Mantzoros CS, et al. Plasma adiponectin concentrations and risk of incident breast cancer. J Clin Endocrinol Metab. 2007;92:1510–6.

    Article  CAS  PubMed  Google Scholar 

  31. Tian YF, Chu CH, Wu MH, Chang CL, Yang T, Chou YC, et al. Anthropometric measures, plasma adiponectin, and breast cancer risk. Endocr Relat Cancer. 2007;14:669–77.

    Article  CAS  PubMed  Google Scholar 

  32. Retnakaran R, Hanley AJ, Connelly PW, Maguire G, Sermer M, Zinman B. Low serum levels of high-molecular weight adiponectin in Indo-Asian women during pregnancy: evidence of ethnic variation in adiponectin isoform distribution. Diabetes Care. 2006;29:1377–9.

    Article  CAS  PubMed  Google Scholar 

  33. Potischman N, Swanson CA, Siiteri P, Hoover RN. Reversal of relation between body mass and endogenous estrogen concentrations with menopausal status. J Nat Can Inst. 1996;88:756–8.

    Article  CAS  Google Scholar 

  34. Dieudonne MN, Bussiere M, Dos Santos E, Leneveu MC, Giudicelli Y, Pecquery R, et al. Adiponectin mediates antiproliferative and apoptotic responses in human MCF7 breast cancer cells. Biochem Biophys Res Commun. 2006;345:271–9.

    Article  CAS  PubMed  Google Scholar 

  35. Arditi JD, Venihaki M, Karalis KP, Chrous GP. Antiproliferative effect of adiponectin on MCF7 breast cancer cells: a potential hormonal like between obesity and cancer. Horm Metab Res. 2007;39:9–13.

    Article  CAS  PubMed  Google Scholar 

  36. Jardé T, Caldefie-Chezet F, Damez M, Mishellany F, Perrone D, Penault-Llorca F, et al. Adiponectin and leptin expression in primary ductal breast cancer and in adjacent healthy epithelial and myoepithelial tissue. Histopathology. 2008;53:484–7.

    Article  PubMed  Google Scholar 

  37. Chappell J, Leitner JW, Solomon S, Golovchenko I, Goalstone ML, Boris Draznin B. Effect of insulin on cell cycle progression in MCF-7 breast cancer cells. Direct and potentiating influence. J Biol Chem. 2001;276:38023–8.

    Article  CAS  PubMed  Google Scholar 

  38. Wang Y, Lam JB, Lam KSL, Liu J, Lam MC, Hoo RLC, et al. Adiponectin modulates the glycogen synthase kinase-3β/β-catenin signaling pathway and attenuates mammary tumorigenesis of MDA-MB-231 cells in nude mice. Cancer Res. 2006;66:11462–70.

    Article  CAS  PubMed  Google Scholar 

  39. Kang JH, Lee YY, Yu BY, Yang BS, Cho KH, Yoon DK, et al. Adiponectin induces growth arrest and apoptosis of MDA-MB-231 breast cancer cell. Arch Pharm Res. 2005;28:1263–9.

    Article  CAS  PubMed  Google Scholar 

  40. Verheus M, van Gils CH, Keinan-Boker L, et al. Plasma phytoestrogens and subsequent breast cancer risk. J Clin Oncol. 2007;25:648–55.

    Article  CAS  PubMed  Google Scholar 

  41. Iwasaki M, Hamada GS, Nishimoto IN, et al. Dietary isoflavone intake and breast cancer risk in case–control studies in Japanese, Japanese Brazilians, and non-Japanese Brazilians. Breast Cancer Res Treat. 2009;116:401–11.

    Article  CAS  PubMed  Google Scholar 

  42. Iwasaki M, Inoue M, Otani T, Sasazaki S, Kurahashi N, Miura T, et al. Plasma isoflavone level and subsequent risk of breast cancer among Japanese women: a nested case–control study from the Japan public health center-based prospective study group. J Clin Oncol. 2008;26:1677–83.

    Article  CAS  PubMed  Google Scholar 

  43. Lampe JW. Emerging research on equol and cancer. J Nutr. 2010;140:1369S–72S.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Wu AH, Yu MC, Tseng CC, Pike MC. Epidemiology of soy exposures and breast cancer risk. Br J Cancer. 2008;98:9–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Mathew A, Gajalakshimi V, Rajan B, Kanimozhi V, Brennan P, Mathew BC, et al. Anthropometric factors and breast cancer risk among urban and rural women in South India: a multicentric case–control study. Br J Cancer. 2008;99:207–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Wu MH, Chou YC, Yu JC, Yu CP, Wu CC, Chu CM, et al. Hormonal and body-size factors in relation to breast cancer risk: a prospective study of 11,889 women in a low-incidence area. Ann Epidemiol. 2006;16:223–9.

    Article  PubMed  Google Scholar 

  47. Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet. 2008;371:698–712.

    Article  Google Scholar 

  48. Potischman N, Swanson CA, Siiteri P, Hoover RN. Reversal of relation between body mass and endogenous estrogen concentrations with menopausal status. J Natl Cancer Inst. 1996;88:756–8.

    Article  CAS  PubMed  Google Scholar 

  49. Jernstrom H, Barrett-Connor E. Obesity, weight change, fasting insulin, proinsulin, C-peptide, and insulin-like growth factor-1 levels in women with and without breast cancer: the Rancho Bernardo Study. J Womens Health Gend Based Med. 1999;8:1265–72.

    Article  CAS  PubMed  Google Scholar 

  50. Kaaks R, Lundin E, Manjer J, Rinaldi S, Biessy C, Söderberg S, et al. Prospective study of IGF-1, IGF-binding proteins, and breast cancer risk, in Northern and Southern Sweden. Cancer Causes Control. 2002;13:307–16.

    Article  PubMed  Google Scholar 

  51. Mink PJ, Shahar E, Rosamond WD, Alberg AJ, Folsom AR. Serum insulin and glucose levels and breast cancer incidence: the atherosclerosis risk in communities study. Am J Epidemiol. 2002;156:349–68.

    Article  PubMed  Google Scholar 

  52. Muti P, Quattrin T, Grant BJB, Krogh V, Micheli A, Schünemann HJ, et al. Fasting glucose is a risk factor for breast cancer: a prospective study. Cancer Epidemiol Biomark Prev. 2002;11:1361–8.

    CAS  Google Scholar 

  53. Kabat GC, Kim M, Caan BJ, Chlebowski RT, Ho GYF, Gunter MJ, et al. Repeated measures of serum glucose and insulin in relation to postmenopausal breast cancer. Int J Cancer. 2009;125:2704–10.

    Article  CAS  PubMed  Google Scholar 

  54. Ogasawara M, Sirbasku DA. A new serum-free method of measuring growth factor activities for human breast cancer cells in culture. In Vitro Cell Dev Biol. 1988;24:911–20.

    Article  CAS  PubMed  Google Scholar 

  55. Milazzo G, Giorgino F, Damante G, Sung C, Stampfer MR, Vigneri R, et al. Insulin receptor expression and function in human breast cancer cell lines. Cancer Res. 1992;52:3924–30.

    CAS  PubMed  Google Scholar 

  56. Gliozzo B, Sung CK, Scalia P, Papa V, Frasca F, Sciacca L, et al. Insulin-stimulated cell growth in insulin receptor substrate-1-deficient ZR-75-1 cells in mediated by a phosphatidylinositol-3-kinase- independent pathway. J Cellular Biochem. 1998;70:268–80.

    Article  CAS  Google Scholar 

  57. Malaguarnera R, Sacco A, Voci C, Pandini G, Vigneri R, AntoninoBelfiore A. Proinsulin binds with high affinity the insulin receptor isoform A and predominantly activates the mitogenic pathway. Endocrinol. 2012;153:2152–63.

    Article  CAS  Google Scholar 

  58. Osborne CK, Monaco ME, Lippman ME, Kahn CR. Correlation among insulin binding, degradation, and biological activity in human breast cancer cells in longterm tissue culture. Cancer Res. 1987;38:94–102.

    Google Scholar 

  59. Sepp-Lorenzino L, Rosen N, Lebwohl DE. Insulin and insulin-like growth factor signaling are defective in the MDA-MB-468 human breast cancer cell line. Cell Growth Differ. 1994;5:1077–83.

    CAS  PubMed  Google Scholar 

  60. Belfiore A, Costantino A, Frasca F, Pandini G, Mineo R, Vigneri P, et al. Overexpression of membrane glycoprotein PC-1 in MDA-MB-231 breast cancer cells in associated with inhibition of insulin receptor tyrosine kinase activity. Mol Endocrinol. 1996;10:1318–26.

    CAS  PubMed  Google Scholar 

  61. Ward H, Chapelais G, Kuhnle GG, Ruben R, Khaw KT, Bingham S. European prospective into cancer-Norfolk cohort. Breast cancer risk in relation to urinary and serum biomarkers of phytoestrogen exposure in the European prospective into Cancer-Norfolk cohort study. Breast Cancer Res. 2008;10:R32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Oh S, Park CY, Lee E, Yoon Y, Lee E, Park S, et al. Adipokines, insulin resistance, metabolic syndrome, and breast cancer recurrence: a cohort study. Breast Cancer Res. 2011;13:R34.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Pajvani UB, Hawkins M, Combs TP, Rajala MW, Doebber T, Berger JP, et al. Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity. J Biol Chem. 2004;279:12152–62.

    Article  CAS  PubMed  Google Scholar 

  64. Waki H, Yamauchi T, Kamon J, Ito Y, Uchida S, Kita S, et al. Impaired multimerization of human adiponectin mutants associated with diabetes. Molecular structure and multimer formation of adiponectin. J Biol Chem. 2003;278:40352–63.

    Article  CAS  PubMed  Google Scholar 

  65. Fisher FF, Trujillo ME, Hanif W, Barnett AH, McTernan PG, Scherer PE, et al. Serum high molecular weight complex of adiponectin correlates better with glucose tolerance than total serum adiponectin in Indo-Asian males. Diabetologia. 2005;48:1084–7.

    Article  CAS  PubMed  Google Scholar 

  66. Hao G, Li W, Guo R, Yang JG, Wang Y, Tian Y, et al. Serum total adiponectin level and the risk of cardiovascular disease in general population: a meta-analysis of 17 prospective studies. Atherosclerosis. 2013;228:29–35.

    Article  CAS  PubMed  Google Scholar 

  67. Mohamad AS, Taher AN, Mohamad AA, El-Nasr MS. Evaluation of serum adiponectin level in Egyptian breast cancer patients before and after treatment. Med J Cairo Univ. 2010;78:67–76.

    Google Scholar 

  68. Pfeiler G, Konigsberg R, Hadji P, Fitzal F, Tea MKM, Vogl S, et al. The impact of estrogen depletion by aromatase inhibitors on adiponectin serum levels in postmenopausal patients with breast cancer. J Clin Oncol (meeting abstracts). 2013;31(suppl):e11601.

    Google Scholar 

Download references

Acknowledgments

This study is supported by a Grant-in-aid for Scientific Research (Project Number 24659325) from the Ministry of Education, Science, Sports and Culture of Japan.

Conflict of interest

All authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Machiko Minatoya.

About this article

Cite this article

Minatoya, M., Kutomi, G., Asakura, S. et al. Relationship of serum isoflavone, insulin and adiponectin levels with breast cancer risk. Breast Cancer 22, 452–461 (2015). https://doi.org/10.1007/s12282-013-0502-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12282-013-0502-2

Keywords

Navigation