Skip to main content
Log in

Ecosystems are Made of Semiosic Bonds: Consortia, Umwelten, Biophony and Ecological Codes

  • Original Paper
  • Published:
Biosemiotics Aims and scope Submit manuscript

Abstract

The paper focuses on the semiotic principles of the organisation of ecosystems, attempting to find concepts that point to relations and not to elements. (1) Consortium (the term introduced by Johannes Reinke around 1873) can be defined as a group of organisms connected via (sign) relations, or groups of interspecific semiosic links in biocoenosis. The consortial relations include trophic and topic relations, both implying a recognition (identification) of the object by an organism involved (these, i.e., are sign relations). These relations are ecologically inheritable. (2) Umwelt (the term introduced by Jakob von Uexküll around 1909) can be defined as a set of relations an organism has in an ecosystem (as in a semiosphere). The formation of an umwelt is dependent on the modelling system of the organism. (3) Biophony (the term introduced by Bernie Krause around 2000) denotes the coordination of inter- and intra-species relations in a soundscape of a biological community. This can be seen as a special case of Komposition as defined by Jakob and Thure von Uexküll. (4) Ecological code (as introduced, e.g. by Alexander Levich around 1977) can be defined as the set of (sign) relations (regular irreducible correspondences) characteristic to an entire ecosystem. We also mention the concepts of ecomones and coactones (introduced by Marcel Florkin in 1965) as the substances which are responsible for mediation of ecological inter-individual relations. All the relations as sign-relations evidently imply both a static or structuralist description (in terms of codes), and a processual description (in terms of semiosis carried on by interpretation). We conclude that all the above mentioned concepts can be viewed as conceptually connected and are suitable for semiotic description of biological communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. This opposition, as initiated by the seminal works of Gleason (1926) and Clements (1928), has been central in vegetation science and in the study of ecological balance for almost a century (see Kull and Zobel 1994).

  2. It should be added that these relations of mutual recognition between organisms can themselves be responsible for the categorization of organisms into the species-like categories.

  3. Active movement is possible for many unicellular organisms; thus, it is a characteristic of both vegetative and animal levels. Different from the Aristotelian tradition, that points to movement when distinguishing the vegetative and animal, we would point to the crucial difference in the processes of interpretation and learning (see Kull 2009b)—animal learning is parallel, making new associations (indexes), whereas vegetative learning is sequential (exclusively iconic).

  4. These two approaches were compared as phi-scientific (physical) and sigma-scientific (semiotic) descriptions in Kull (2009a).

  5. Relations are both functions and signs (sign processes). Everything that life does can thus be described on the basis of relational processes.

  6. Cf. Bains 2006.

  7. In addition to Uexküll’s Funktionskreis, I refer here to the concept of Gestaltkreis of Victor von Weizsäcker, as referred to in connection with biosemiotics by Rothschild (1994). See also Harries-Jones 2002; Berthos and Christen 2009; Chang 2009; Fagot-Largeault 2009.

  8. Reinke (1872a) mentions that he had heard the term first in a conversation with August Grisebach, who used it for the description of the relations between the algae and fungi in lichens.

  9. Another work—Reinke 1873a—which is sometimes referred to in the literature as the source for the term ‘consortium’, does not actually include this term in the text (Sööt 2009).

  10. Another early use of the term ‘consortium’ in a similar sense belongs to Andrei Famintsyn. See, e.g., Ryan (2002: 52).

  11. Albert Bernhard Frank (1877) introduced the term homobium to denote the system in which the partner organisms form a new organism (and lose their separate independence), thus leaving the term consortium for a broader meaning (see also Höxtermann and Mollenhauer 2007).

  12. See also Kull 1999.

  13. E.g. according to Matafonov et al. (2005: 490), a consortium can be seen as an “elementary biocenosis that includes interacting populations of the edificator and consort species”.

  14. Matafonov et al. (2005) find it possible to speak about the key consortia as the ones that may be of particular importance in terms of the stability of a biocoenosis.

  15. From a speech B. Krause made to the San Francisco World Affairs Council, titled “Loss of national soundscape: Global implication of its effect on humans and other creatures”, on January 31, 2001.

  16. Also in Favareau (2010: 454). See also Ikeshoji 1977.

  17. See also Gauthier and Aubert (1981: 226).

References

  • Ainsworth, G. C. (1976). Introduction to the history of mycology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Bains, P. (2006). The primacy of semiosis: An ontology of relations. Toronto: University of Toronto Press.

    Google Scholar 

  • Beklemishev, V. N. (1951) Беклемишев, В. Н. (1951). О классификации биоценологических (симфизиологических) связей. Бюллетень Московского общества испытателей природы 56(5), 3–30.

  • Belomesyatseva, D. B. (2002). The fungi in the consortium of common juniper in Belarus. Mycena, 2(1), 4–16.

    Google Scholar 

  • Berthos, A., & Christen, Y. (Eds.). (2009). Neurobiology of “Umwelt”: How living beings perceive the world. Berlin: Springer-Verlag.

    Google Scholar 

  • Brenner, K., Karig, D. K., Weiss, R., & Arnold, F. H. (2007). Engineered bidirectional communication mediates a consensus in a microbial biofilm consortium. Proceedings of the National Academy of Sciences of the United States of America, 104(44), 17300–17304.

    Article  CAS  PubMed  Google Scholar 

  • Caron, D. A. (2000). Symbiosis and mixotrophy among pelagic microorganisms. In D. L. Kirchman (Ed.), Microbial ecology of the oceans (pp. 495–523). New York: Wiley-Liss.

    Google Scholar 

  • Chang, R. S. (Ed.). (2009). Relating to environments: A new look at Umwelt. Charlotte: Information Age.

    Google Scholar 

  • Church, A. H. (1920). The lichen symbiosis. Journal of Botany, British and Foreign, 58, 213–219. 262–267.

    Google Scholar 

  • Clements, F. E. (1928). Plant succession and indicators. New York: H. W. Wilson.

    Google Scholar 

  • Cobley, P. (Ed.). (2010). The Routledge companion to semiotics. London: Routledge.

    Google Scholar 

  • Elvers, K. T., & Lappin-Scott, H. M. (2004). Biofilms and biofoulding. In M. Schaechter (Ed.), The desk encyclopedia of microbiology (pp. 161–167). Amsterdam: Elsevier Academic.

    Google Scholar 

  • Fagot-Largeault, A. (2009). Anthropological physiology: von Uexküll, Portmann, Buytendijk. In A. Berthos & Y. Christen (Eds.), Neurobiology of “Umwelt”: How living beings perceive the world (pp. 1–5). Berlin: Springer-Verlag.

    Google Scholar 

  • Favareau, D. (Ed.). (2010). Essential readings in biosemiotics. Berlin: Springer.

    Google Scholar 

  • Florkin, M. (1965). Approches moléculaires de l’intégration écologique: Problèmes de terminologie. Bulletin de l’Académie Royale de Belgique (Classe des Sciences), 5e série, 51, 239–248.

    CAS  Google Scholar 

  • Frank, A. B. (1877). Ueber die biologischen Verhältnisse des Thallus einiger Krustenflechten. Beiträge zur Biologie der Pflanzen, 2, 123–200.

    Google Scholar 

  • Gaino, E., Lancioni, T., La Porta, G., & Todini, B. (2004). The consortium of the sponge Ephydatia fluviatilis (L.) living on the common reed Phragmites australis in Lake Piediluco (central Italy). Hydrobiologia, 520, 165–178.

    Article  Google Scholar 

  • Gauthier, M. J., & Aubert, M. (1981). Chemical telemediators in the marine environment. In E. K. Duursma & R. Dawson (Eds.), Marine organic chemistry: Evolution, composition, interactions and chemistry of organic matter in seawater (pp. 225–257). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Gleason, H. A. (1926). The individualistic concept of plant association. Bulletin of the Torrey Botanical Club, 53, 1–20.

    Article  Google Scholar 

  • Gómez, F. (2007). On the consortium of the tintinnid Eutintinnus and the diatom Chaetoceros in the Pacific Ocean. Marine Biology, 151, 1899–1906.

    Article  Google Scholar 

  • Harries-Jones, P. (2002). Where bonds become binds: the necessity for Bateson’s interactive perspective in biosemiotics. Sign Systems Studies, 30(1), 163–181.

    Google Scholar 

  • Hejný, S. (1972). Editorial note. Folia Geobotanica, 7(1), 1.

    Google Scholar 

  • Hess, E. H. (1962). Imprinting and the critical period concept. In E. L. Bliss (Ed.), Roots of behavior (pp. 254–263). New York: Hoeber-Harper.

    Google Scholar 

  • Hess, E. H. (1973). Imprinting: Early experience and the developmental psychobiology of attachment. New York: Van Nostrand Reinhold Company.

    Google Scholar 

  • Hoffmeyer, J. (2008). Biosemiotics: An examination into the signs of life and the life of signs. Scranton: Scranton University Press.

    Google Scholar 

  • Höxtermann, E., & Mollenhauer, D. (2007). Symbiose und Symbiogenese—Entdeckung und Entwicklung eines biologischen Problems. In A. Geus & E. Höxtermann (Eds.), Evolution durch Kooperation und Integration: Zur Entstehung der Endosymbiosetheorie in der Zellbiologie (pp. 227–284). Marburg: Basilisken-Presse.

    Google Scholar 

  • Ikeshoji, T. (1977). Self-limiting ecomones in the populations of insects and some aquatic animals. Pesticide Science, 2, 77–89.

    Google Scholar 

  • Jablonka, E. (2001). The systems of inheritance. In S. Oyama, P. E. Griffiths, & R. D. Gray (Eds.), Cycles of contingency: Developmental systems and evolution (pp. 99–116). Cambridge: A Bradford Book.

    Google Scholar 

  • Krause, B. (2002). Wild soundscapes. Berkeley: Wilderness.

    Google Scholar 

  • Kull, K. (1999). Symbiosis is semiosis. In E. Wagner, J. Normann, H. Greppin, J. H. P. Hackstein, R. G. Herrmann, K. V. Kowallik, H. E. A. Schenk, & J. Seckbach (Eds.), From symbiosis to eukaryotism: Endocytobiology VII (pp. 663–668). Geneva: Geneva University Press.

    Google Scholar 

  • Kull, K. (2009a). Biosemiotics: to know, what life knows. Cybernetics and Human Knowing, 16(3/4), 81–88.

    Google Scholar 

  • Kull, K. (2009b). Vegetative, animal, and cultural semiosis: the semiotic threshold zones. Cognitive Semiotics, 4, 8–27.

    Article  Google Scholar 

  • Kull, K., & Zobel, M. (1994). Vegetation structure and species coexistence. Folia Geobotanica et Phytotaxonomica, 29, 433–437.

    Google Scholar 

  • Laland, K. N., Odling-Smee, F. J., & Feldman, M. W. (2001). Niche construction, ecological inheritance, and cycles of contingency in evolution. In S. Oyama, P. E. Griffiths, & R. D. Gray (Eds.), Cycles of contingency: Developmental systems and evolution (pp. 117–126). Cambridge: A Bradford Book.

    Google Scholar 

  • Levich, A. P. (1983). Semiotic structures in ecology, or does there exist an ecological code? In Man and biosphere. 8th issue (pp. 68–77). Moscow: Moscow University Press. (Левич А.П. 1983. Семиотические структуры в экологии, или существует ли экологический код? // Человек и биосфера. М.: Изд-во Моск. университета, 68–77.)

  • Masing, V. (1976). Мазинг, В. (1976) Проблемы изучения консорций. Значение консортивных связей в организации биогеоценосов (под ред. И. А. Селиванов), с. 18–27. Министерство Просвещения РСФСР, Пермский Государственный Педагогический Инcтитут, Пермь.

  • Masing, V. (1981). Consortia as elements of the functional structure of biocenoses. In L. Laasimer (Ed.), Anthropogenous changes in the plant cover of Estonia (pp. 64–76). Tartu: Academy of Sciences of the Estonian SSR, Institute of Zoology and Botany.

    Google Scholar 

  • Matafonov, D. V., Kuklin, A. P., & Matafonov, P. V. (2005). Consortia in aquatic ecosystems of the Transbaikalia. Biological Bulletin, 32(5), 490–495.

    Article  Google Scholar 

  • Popa, R. (2004). Between necessity and probability: Searching for the definition and origin of life. Berlin: Springer.

    Google Scholar 

  • Porras-Alfaro, A., Herrera, J., Sinsabaugh, R. L., Odenbach, K. J., Lowrey, T., & Natvig, D. O. (2008). Root fungal consortium associated with a dominant desert grass. Applied and Environmental Microbiology, 74(9), 2805–2813.

    Article  CAS  PubMed  Google Scholar 

  • Rabotnov, T. A. (1972). Consortia, the importance of their study for phytocoenology. Folia Geobotanica, 7(1), 1–8.

    Google Scholar 

  • Rabotnov, T. A. (1973). Работнов, Т. А. (1973) Некоторые вопросы изучения консорций. Журнал общей биологии 34, 407–416.

  • Ramensky, L. G. (1952). Раменский, Л. Г. (1952) О некоторых принципиальныx положениях современной геоботаники. Ботaнический Журнал, 37(2), 181–201.

    Google Scholar 

  • Reinke, J. (1872a). Ueber die anatomischen Verhältnisse einiger Arten von Gunnera L. Nachrichten von der Königl. Gesellschaft der Wissenschaften und der Georg-Augusts-Universität zu Göttingen, 9, 100–108.

    Google Scholar 

  • Reinke, J. (1872b). Über gonidienartige Bildungen in einer dikotylischen Pflanze (Gunnera). Botanischer Zeitung, 30, 59–61. cit. in Höxtermann 2007.

    Google Scholar 

  • Reinke, J. (1873a). Zur Kenntniss des Rhizoms von Corallorhiza und Epipogon. Flora, 56, 145–152. 161–167, 177–184, 209–224.

    Google Scholar 

  • Reinke, J. (1873b). Untersuchungen über die Morphologie der Vegetationsorgane von Gunnera. In J. Reinke (Ed.), Morphologische Abhandlungen (pp. 45–118). Leipzig: W. Engelmann. cit. in Höxtermann 2007.

    Google Scholar 

  • Reinke, J. (1901). Einleitung in die theoretische Biologie. Berlin: Verlag von Gebrüder Paetel.

    Google Scholar 

  • Rothschild, F. S. (1994). Parallels to biosemiotics in Viktor von Weizsaecker’s writings. In F. S. Rothschild (Eds.) Creation and evolution: A biosemiotic approach (pp. 90–95), (Hess, Jozef Ph., trans.). Jerusalem: J. Ph. Hes.

  • Ryan, F. (2002). Darwin’s blind spot: Evolution beyond natural selection. New York: Houghton Mifflin Company.

    Google Scholar 

  • Sapp, J., Carrapiço, F., & Zolotonosov, M. (2002). Symbiogenesis: the hidden face of Constantin Merezhkowsky. History and Philosophy of the Life Sciences, 24(3/4), 413–440.

    Article  PubMed  Google Scholar 

  • Sööt, T. (2009). Konsortsiumi mõiste ökoloogias. (Bakalaureusetöö.) Tartu: Tartu Ülikool. [Manuscript.]

  • Strasburger, E., Lang, W. H., Karsten, G., Jost, L., & Schenck, H. (1912). A text-book of botany. London: Macmillan.

    Google Scholar 

  • Uexküll, J. von (1980). In T. von Uexküll (Ed.), Kompositionslehre der Natur: Biologie als undogmatische Naturwisenschaft. Frankfurt am Main: Ullstein.

    Google Scholar 

  • Uexküll, J. von (1982[1940]). The theory of meaning. Semiotica, 42(1), 25–82.

    Article  Google Scholar 

Download references

Acknowledgements

To Tiina Sööt for the material on consortia. To Jesper Hoffmeyer and Sergey Chebanov for good conversations on this topic. To the editors of this volume for an excellent work. To colleagues for their permanent support. To ETF and CECT for supporting the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalevi Kull.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kull, K. Ecosystems are Made of Semiosic Bonds: Consortia, Umwelten, Biophony and Ecological Codes. Biosemiotics 3, 347–357 (2010). https://doi.org/10.1007/s12304-010-9081-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12304-010-9081-1

Keywords

Navigation