Skip to main content
Log in

Superior Cerebellar Peduncle Atrophy in Friedreich’s Ataxia Correlates with Disease Symptoms

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Friedreich’s ataxia (FRDA) is the most common early onset inherited ataxia with clinical manifestations, including gradual progression of unremitting cerebellar–sensory ataxia, peripheral sensory loss, loss of lower limb tendon reflexes and hypertrophic cardiomyopathy. Although atrophy of the superior cerebellar peduncle (SCP) has been reported in several magnetic resonance imaging (MRI) studies of FRDA, the relationship of SCP changes to genetic and clinical features of FRDA has not been investigated. We acquired T1-weighted MRI scans in 12 right-handed individuals with FRDA, homozygous for a GAA expansion in intron 1 of FXN, as well as 13 healthy age-matched controls. The corrected cross-sectional areas of the right (left) SCP in the individuals with FRDA (R, 20 ± 7.9 mm2; L, 25 ± 5.6 mm2) were significantly smaller than for controls (R, 68 ± 16 mm2; L, 78 ± 17 mm2) (p < 0.001). The SCP volumes of individuals with FRDA were negatively correlated with Friedreich’s ataxia rating scale score (r = −0.553) and disease duration (r = −0.541), and positively correlated with the age of onset (r = 0.548) (p < 0.05). These findings suggest that structural MR imaging of the SCP can provide a surrogate marker of disease severity in FRDA and support the potential role of structural MRI as a biomarker in the evaluation of neurodegenerative diseases and therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pandolfo M. Friedreich ataxia: the clinical picture. J Neurol. 2009;256 Suppl 1:3–8.

    Article  PubMed  Google Scholar 

  2. Campuzano V, Montermini L, Molto MD, Pianese L, Cossee M, Cavalcanti F, et al. Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science. 1996;271(5254):1423–7.

    Article  CAS  PubMed  Google Scholar 

  3. Alper G, Narayanan V. Friedreich’s ataxia. Pediatr Neurol. 2003;28(5):335–41.

    Article  PubMed  Google Scholar 

  4. Wullner U, Klockgether T, Petersen D, Naegele T, Dichgans J. Magnetic resonance imaging in hereditary and idiopathic ataxia. Neurology. 1993;43(2):318–25.

    CAS  PubMed  Google Scholar 

  5. Huang YP, Tuason MY, Wu T, Plaitakis A. MRI and CT features of cerebellar degeneration. J Formos Med Assoc. 1993;92(6):494–508.

    CAS  PubMed  Google Scholar 

  6. Ormerod IE, Harding AE, Miller DH, Johnson G, MacManus D, du Boulay EP, et al. Magnetic resonance imaging in degenerative ataxic disorders. J Neurol Neurosurg Psychiatry. 1994;57(1):51–7.

    Article  CAS  PubMed  Google Scholar 

  7. De Michele G, Di Salle F, Filla A, D'Alessio G, Ambrosio G, Viscardi L, et al. Magnetic resonance imaging in “typical” and “late onset” Friedreich’s disease and early onset cerebellar ataxia with retained tendon reflexes. Ital J Neurol Sci. 1995;16(5):303–8.

    Article  PubMed  Google Scholar 

  8. Della Nave R, Ginestroni A, Giannelli M, Tessa C, Salvatore E, Salvi F, et al. Brain structural damage in Friedreich’s ataxia. J Neurol Neurosurg Psychiatry. 2008;79(1):82–5.

    Google Scholar 

  9. Braak H, Braak E. Morphological studies of local circuit neurons in the cerebellar dentate nucleus of man. Hum Neurobiol. 1983;2(2):49–57.

    CAS  PubMed  Google Scholar 

  10. Yamaguchi K, Goto N. Three-dimensional structure of the human cerebellar dentate nucleus: a computerized reconstruction study. Anat Embryol Berl. 1997;196(4):343–8.

    Article  CAS  PubMed  Google Scholar 

  11. Milosevic NT, Ristanovic D, Maric DL, Rajkovic K. Morphology and cell classification of large neurons in the adult human dentate nucleus: a quantitative study. Neurosci Lett. 2010;468(1):59–63.

    Article  CAS  PubMed  Google Scholar 

  12. Della Nave R, Ginestroni A, Tessa C, Salvatore E, Bartolomei I, Salvi F, et al. Brain white matter tracts degeneration in Friedreich ataxia. An in vivo MRI study using tract-based spatial statistics and voxel-based morphometry. NeuroImage. 2008;40(1):19–25.

    Article  PubMed  Google Scholar 

  13. Subramony SH, May W, Lynch D, Gomez C, Fischbeck K, Hallett M, et al. Measuring Friedreich ataxia: interrater reliability of a neurologic rating scale. Neurology. 2005;64(7):1261–2.

    CAS  PubMed  Google Scholar 

  14. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage. 2004;23 Suppl 1:S208–19.

    Article  PubMed  Google Scholar 

  15. Jenkinson M, Smith S. A global optimisation method for robust affine registration of brain images. Med Image Anal. 2001;5(2):143–56.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang Y, Brady M, Smith S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging. 2001;20(1):45–57.

    Article  CAS  PubMed  Google Scholar 

  17. Jack CR, Twomey CK, Zinsmeister AR, Sharbrough FW, Petersen RC, Cascino GD. Anterior temporal lobes and hippocampal formations: normative volumetric measurements from MR images in young adults. Radiology. 1989;172(2):549–54.

    PubMed  Google Scholar 

  18. Barnes J, Scahill RI, Boyes RG, Frost C, Lewis EB, Rossor CL, et al. Differentiating AD from aging using semiautomated measurement of hippocampal atrophy rates. Neuroimage. 2004;23(2):574–81.

    Article  PubMed  Google Scholar 

  19. Paviour DC, Price SL, Stevens JM, Lees AJ, Fox NC. Quantitative MRI measurement of superior cerebellar peduncle in progressive supranuclear palsy. Neurology. 2005;64(4):675–9.

    CAS  PubMed  Google Scholar 

  20. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1(8476):307–10.

    CAS  PubMed  Google Scholar 

  21. Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res. 1999;8(2):135–60.

    Article  CAS  PubMed  Google Scholar 

  22. Diedrichsen J. A spatially unbiased atlas template of the human cerebellum. Neuroimage. 2006;33(1):127–38.

    Article  PubMed  Google Scholar 

  23. Diedrichsen J, Balsters JH, Flavell J, Cussans E, Ramnani N. A probabilistic MR atlas of the human cerebellum. Neuroimage. 2009;46(1):39–46.

    Article  PubMed  Google Scholar 

  24. Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J. An inventory for measuring depression. Arch Gen Psychiatry. 1961;4:561–71.

    CAS  PubMed  Google Scholar 

  25. Golden CJ. The Stroop Color and Word Test. A manual for clinical and experimental uses. Chicago: Stoelting; 1978.

  26. Nelson HE, O'Connell A. Dementia: the estimation of premorbid intelligence levels using the New Adult Reading Test. Cortex. 1978;14(2):234–44.

    CAS  PubMed  Google Scholar 

  27. Corben LA, Georgiou-Karistianis N, Fahey MC, Storey E, Churchyard A, Horne M, et al. Towards an understanding of cognitive function in Friedreich ataxia. Brain Res Bull. 2006;70(3):197–202.

    Article  PubMed  Google Scholar 

  28. Corben LA, Delatycki MB, Bradshaw JL, Horne MK, Fahey MC, Churchyard AJ, et al. Impairment in motor reprogramming in Friedreich ataxia reflecting possible cerebellar dysfunction. J Neurol. 2009;257(5):782–89.

    Article  PubMed  Google Scholar 

  29. Wessel K, Schroth G, Diener HC, Muller-Forell W, Dichgans J. Significance of MRI-confirmed atrophy of the cranial spinal cord in Friedreich’s ataxia. Eur Arch Psychiatry Neurol Sci. 1989;238(4):225–30.

    Article  CAS  PubMed  Google Scholar 

  30. Mascalchi M, Salvi F, Piacentini S, Bartolozzi C. Friedreich’s ataxia: MR findings involving the cervical portion of the spinal cord. Am J Roentgenol. 1994;163(1):187–91.

    CAS  Google Scholar 

  31. Barbeau A. The Quebec cooperative study of Friedreich’s ataxia: 1974–1984—10 years of research. Can J Neurol Sci. 1984;11(4 Suppl):646–60.

    CAS  PubMed  Google Scholar 

  32. Ramos A, Quintana F, Diez C, Leno C, Berciano J. CT findings in spinocerebellar degeneration. Ajnr. 1987;8(4):635–40.

    CAS  PubMed  Google Scholar 

  33. Middleton FA, Strick PL. Cerebellar projections to the prefrontal cortex of the primate. J Neurosci. 2001;21(2):700–12.

    CAS  PubMed  Google Scholar 

  34. Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci. 2003;23(23):8432–44.

    CAS  PubMed  Google Scholar 

  35. Waldvogel D, van Gelderen P, Hallett M. Increased iron in the dentate nucleus of patients with Friedrich’s ataxia. Ann Neurol. 1999;46(1):123–5.

    Article  CAS  PubMed  Google Scholar 

  36. Franca Jr MC, D'Abreu A, Yasuda CL, Bonadia LC, Santos da Silva M, Nucci A, et al. A combined voxel-based morphometry and 1H-MRS study in patients with Friedreich’s ataxia. J Neurol. 2009;256(7):1114–20.

    Article  PubMed  Google Scholar 

  37. Pagani E, Ginestroni A, Della Nave R, Agosta F, Salvi F, De Michele G, et al. Assessment of brain white matter fiber bundle atrophy in patients with Friedreich ataxia. Radiology. 2010;255(3):882–9.

    Article  PubMed  Google Scholar 

  38. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage. 2006;31(4):1487–505.

    Article  PubMed  Google Scholar 

  39. Pia Sormani M, Bruzzi P, Comi G, Filippi M. MRI metrics as surrogate markers for clinical relapse rate in relapsing–remitting MS patients. Neurology. 2002;58(3):417–21.

    Google Scholar 

  40. Scheltens P, Barkhof F, Fazekas F. White matter changes on MRI as surrogate marker. Int Psychogeriatr. 2003;15(SupplementS1):261–5.

    Article  PubMed  Google Scholar 

  41. Bohanna I, Georgiou-Karistianis N, Hannan AJ, Egan GF. Magnetic resonance imaging as an approach towards identifying neuropathological biomarkers for Huntington’s disease. Brain Res Rev. 2008;58(1):209–25.

    Article  CAS  PubMed  Google Scholar 

  42. Delatycki MB. Evaluating the progression of Friedreich ataxia and its treatment. J Neurol. 2009;256 Suppl 1:36–41.

    Article  PubMed  Google Scholar 

  43. Storey E, Tuck K, Hester R, Hughes A, Churchyard A. Inter-rater reliability of the international cooperative ataxia rating scale (ICARS). Mov Disord. 2004;19(2):190–2.

    Article  PubMed  Google Scholar 

  44. Lynch DR, Farmer JM, Tsou AY, Perlman S, Subramony SH, Gomez CM, et al. Measuring Friedreich ataxia: complementary features of examination and performance measures. Neurology. 2006;66(11):1711–16.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the participants for taking part in this study. This study was supported by funding from the Friedreich Ataxia Research Association (Australasia), Friedreich Ataxia Research Alliance (USA) and Murdoch Childrens Research Institute. HA received a Melbourne International fee remission scholarship and a Melbourne International Research scholarship. MBD is an NHMRC practitioner fellow. GFE is an NHMRC research fellow.

Conflict of Interest

Dr. Hamed Akhlaghi received a Melbourne International Fee Remission Scholarship and a Melbourne International Research Scholarship.

Professor Elsdon Storey has received honoraria (payable to his institution) from Pfizer for lecturing on non-drug-related issues at an education course. He is a co-investigator on an NIH trial for which Merck is providing active drug (aspirin and placebo).

Professor Martin B. Delatycki is associate editor for BMC Neurology; he receives grants from NHMRC, Friedreich Ataxia Research Alliance, Friedreich Ataxia Research Association, and he is on the Pfizer Australia Neuroscience Grant Panel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Akhlaghi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akhlaghi, H., Corben, L., Georgiou-Karistianis, N. et al. Superior Cerebellar Peduncle Atrophy in Friedreich’s Ataxia Correlates with Disease Symptoms. Cerebellum 10, 81–87 (2011). https://doi.org/10.1007/s12311-010-0232-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-010-0232-3

Keywords

Navigation