Skip to main content

Advertisement

Log in

Cognitive Deficits In Friedreich Ataxia Correlate with Micro-structural Changes in Dentatorubral Tract

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Atrophy of the dentate nucleus is one of the major neuropathological changes in Friedreich ataxia (FRDA). Neuroimaging studies demonstrated white matter (WM) degeneration in FRDA. In this study, we used advanced tractography techniques to quantitatively measure WM changes in the dentato-thalamic and dentato-rubral tracts, and correlated these changes with cognitive profiles of FRDA. We also analysed diffusivity changes of the thalamo-cortical tract to assess whether neurological degeneration of WM extends beyond the primary site of involvement in FRDA. Twelve genetically proven individuals with FRDA and 14 controls were recruited. Sixty directions diffusion tensor images were acquired. The WM bundles from the dentate nucleus were estimated using a constrained spherical deconvolution method and the diffusivity characteristics measured. The Simon task was used to assess cognitive profile of FRDA. The dentato-rubral, dentato-thalamic and thalamo-cortical tracts manifested significantly lower fractional anisotropy, higher mean diffusivity and increased radial diffusivity in FRDA compared with controls. There was no difference in axial diffusivity between the two groups. The mean and radial diffusivity of the dentato-rubral tract was positively correlated with choice reaction time, congruent reaction time, incongruent reaction time and Simon effect reaction time and negatively with the larger GAA repeat. Significant changes in diffusivity characteristics were observed in the dentato-thalamic and thalamo-cortical tracts, suggesting extensive WM degeneration and affected WM structures in FRDA. Correlation of WM changes in the dentato-rubral tract with the cognitive assessment suggested that this tract is an important contributor to cognitive disturbances in FRDA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Delatycki MB, Williamson R, Forrest SM. Friedreich ataxia: an overview. J Med Genet. 2000;37(1):1–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Filla A, Cocozza S, Michele GD. Friedreich's ataxia: from the patient to the gene. Neurol Sci. 2001;22(0):S21–S5. doi:10.1007/s100720170005

    Article  Google Scholar 

  3. Koeppen AH, Morral JA, Davis AN, Qian J, Petrocine SV, Knutson MD, et al. The dorsal root ganglion in Friedreich's ataxia. Acta Neuropathol. 2009;118(6):763–76.

    Article  PubMed  Google Scholar 

  4. Morral JA, Davis AN, Qian J, Gelman BB, Koeppen AH. Pathology and pathogenesis of sensory neuropathy in Friedreich's ataxia. Acta Neuropathol. 2010;120(1):97–108.

    Article  PubMed  Google Scholar 

  5. Ramos A, Quintana F, Diez C, Leno C, Berciano J. CT findings in spinocerebellar degeneration. Ajnr. 1987 Jul-Aug;8(4):635–40.

  6. Wullner U, Klockgether T, Petersen D, Naegele T, Dichgans J. Magnetic resonance imaging in hereditary and idiopathic ataxia. Neurology. 1993;43(2):318–25.

    Article  CAS  PubMed  Google Scholar 

  7. Mascalchi M, Salvi F, Piacentini S, Bartolozzi C. Friedreich's ataxia: MR findings involving the cervical portion of the spinal cord. Am J Roentgenol. 1994;163(1):187–91.

    Article  CAS  Google Scholar 

  8. Mantovan MC, Martinuzzi A, Squarzanti F, Bolla A, Silvestri I, Liessi G, et al. Exploring mental status in Friedreich's ataxia: a combined neuropsychological, behavioral and neuroimaging study. Eur J Neurol. 2006;13(8):827–35.

    Article  CAS  PubMed  Google Scholar 

  9. Gilman S, Junck L, Markel DS, Koeppe RA, Kluin KJ. Cerebral glucose hypermetabolism in Friedreich's ataxia detected with positron emission tomography. Annals of neurology. 1990;28(6):750–7.

    Article  CAS  PubMed  Google Scholar 

  10. Ginestroni A, Diciotti S, Cecchi P, Pesaresi I, Tessa C, Giannelli M, et al. Neurodegeneration in friedreich's ataxia is associated with a mixed activation pattern of the brain. A fMRI study. Human brain mapping. 2011 Jun 14.

  11. Georgiou-Karistianis N, Akhlaghi H, Corben LA, Delatycki MB, Storey E, Bradshaw JL, et al. Decreased functional brain activation in Friedreich ataxia using the Simon effect task. Brain Cogn. 2012;79(3):200–8.

    Article  CAS  PubMed  Google Scholar 

  12. Mori S, Barker PB. Diffusion magnetic resonance imaging: its principle and applications. Anat Rec. 1999;257(3):102–9.

    Article  CAS  PubMed  Google Scholar 

  13. Beaulieu C. The basis of anisotropic water diffusion in the nervous system—a technical review. NMR Biomed. 2002 Nov–Dec;15(7–8):435–55.

  14. Mukherjee P, Chung SW, Berman JI, Hess CP, Henry RG. Diffusion tensor MR imaging and fiber tractography: technical considerations. Ajnr. 2008;29(5):843–52.

    Article  CAS  PubMed  Google Scholar 

  15. Koeppen AH, Michael SC, Knutson MD, Haile DJ, Qian J, Levi S, et al. The dentate nucleus in Friedreich's ataxia: the role of iron-responsive proteins. Acta Neuropathol. 2007;114(2):163–73.

    Article  CAS  PubMed  Google Scholar 

  16. Koeppen AH, Davis AN, Morral JA. The cerebellar component of Friedreich's ataxia. Acta Neuropathol. 2011;122(3):323–30.

    Article  PubMed  Google Scholar 

  17. Della Nave R, Ginestroni A, Diciotti S, Salvatore E, Soricelli A, Mascalchi M. Axial diffusivity is increased in the degenerating superior cerebellar peduncles of Friedreich's ataxia. Neuroradiology. 2010;53(5):367–72.

    Article  PubMed  Google Scholar 

  18. Della Nave R, Ginestroni A, Tessa C, Salvatore E, Bartolomei I, Salvi F, et al. Brain white matter tracts degeneration in Friedreich ataxia. An in vivo MRI study using tract-based spatial statistics and voxel-based morphometry. NeuroImage. 2008;40(1):19–25.

    Article  PubMed  Google Scholar 

  19. Pagani E, Ginestroni A, Della Nave R, Agosta F, Salvi F, De Michele G, et al. Assessment of brain white matter fiber bundle atrophy in patients with Friedreich ataxia. Radiology. 2010;255(3):882–9.

    Article  PubMed  Google Scholar 

  20. Akhlaghi H, Corben L, Georgiou-Karistianis N, Bradshaw J, Delatycki MB, Storey E, et al. A functional MRI study of motor dysfunction in Friedreich's ataxia. Brain Res. 2012;1471:138–54.

    Article  CAS  PubMed  Google Scholar 

  21. Akhlaghi H, Corben L, Georgiou-Karistianis N, Bradshaw J, Storey E, Delatycki MB, et al. Superior cerebellar peduncle atrophy in Friedreich's ataxia correlates with disease symptoms. Cerebellum (London, England). 2011 Mar;10(1):81–7.

  22. Chamberlain S, Shaw J, Rowland A, Wallis J, South S, Nakamura Y, et al. Mapping of mutation causing Friedreich's ataxia to human chromosome 9. Nature. 1988;334(6179):248–50.

    Article  CAS  PubMed  Google Scholar 

  23. Subramony SH, May W, Lynch D, Gomez C, Fischbeck K, Hallett M, et al. Measuring Friedreich ataxia: interrater reliability of a neurologic rating scale. Neurology. 2005;64(7):1261–2.

    Article  CAS  PubMed  Google Scholar 

  24. Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J. An inventory for measuring depression. Arch Gen Psychiatry. 1961;4:561–71.

    Article  CAS  PubMed  Google Scholar 

  25. Corben LA, Georgiou-Karistianis N, Fahey MC, Storey E, Churchyard A, Horne M, et al. Towards an understanding of cognitive function in Friedreich ataxia. Brain Res Bull. 2006;70(3):197–202.

    Article  PubMed  Google Scholar 

  26. Corben LA, Delatycki MB, Bradshaw JL, Horne MK, Fahey MC, Churchyard AJ, et al. Impairment in motor reprogramming in Friedreich ataxia reflecting possible cerebellar dysfunction. J Neurol. 2010;257(5):782–91.

    Article  PubMed  Google Scholar 

  27. Georgiou-Karistianis N, Akhlaghi H, Corben L, Delatycki M, Storey E, Bradshaw J, et al. Decreased functional brain activation in Friedreich ataxia using the Simon effect task. Brain and Cognition. 2012;79:200–8.

    Article  CAS  PubMed  Google Scholar 

  28. Behrens TE, Woolrich MW, Jenkinson M, Johansen-Berg H, Nunes RG, Clare S, et al. Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med. 2003;50(5):1077–88.

    Article  CAS  PubMed  Google Scholar 

  29. Smith SM. Fast robust automated brain extraction. Human brain mapping. 2002;17(3):143–55.

    Article  PubMed  Google Scholar 

  30. Jenkinson M, Smith S. A global optimisation method for robust affine registration of brain images. Med Image Anal. 2001;5(2):143–56.

    Article  CAS  PubMed  Google Scholar 

  31. Corben LA, Akhlaghi H, Georgiou-Karistianis N, Bradshaw JL, Egan GF, Storey E, et al. Impaired inhibition of prepotent motor tendencies in Friedreich ataxia demonstrated by the Simon interference task. Brain Cogn. 2011;76(1):140–5.

    Article  CAS  PubMed  Google Scholar 

  32. Song SK, Sun SW, Ramsbottom MJ, Chang C, Russell J, Cross AH. Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. NeuroImage. 2002;17(3):1429–36.

    Article  PubMed  Google Scholar 

  33. Said G, Marion M-H, Selva J, Jamet C. Hypotrophic and dying-back nerve fibers in Friedreich's ataxia. Neurology. 1986;36(10):1292.

    Article  CAS  PubMed  Google Scholar 

  34. Carroll WM, Kriss A, Baraitser M, Barrett G, Halliday AM. The incidence and nature of visual pathway involvement in Friedreich's ataxia. A clinical and visual evoked potential study of 22 patients. Brain. 1980;103(2):413–34.

    Article  CAS  PubMed  Google Scholar 

  35. Murayama S, Bouldin TW, Suzuki K. Pathological study of corticospinal-tract degeneration in Friedreich's ataxia. Neuropathol Appl Neurobiol. 1992;18(1):81–6.

    Article  CAS  PubMed  Google Scholar 

  36. Pandolfo M. Friedreich ataxia: the clinical picture. J Neurol. 2009;256 Suppl 1:3–8.

    Article  PubMed  Google Scholar 

  37. Johnson WG. Friedreich ataxia. Clin Neurosci. 1995;3(1):33–8.

    CAS  PubMed  Google Scholar 

  38. Habas C, Guillevin R, Abanou A. In vivo structural and functional imaging of the human rubral and inferior olivary nuclei: A mini-review. Cerebellum (London, England). 2010;9(2):167–73.

    Article  Google Scholar 

  39. Nioche C, Cabanis EA, Habas C. Functional connectivity of the human red nucleus in the brain resting state at 3T. Ajnr. 2009;30(2):396–403.

    Article  CAS  PubMed  Google Scholar 

  40. Koeppen AH. Friedreich's ataxia: pathology, pathogenesis, and molecular genetics. J neurol sci. 2011;303(1–2):1–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Tournier JD, Yeh CH, Calamante F, Cho KH, Connelly A, Lin CP. Resolving crossing fibres using constrained spherical deconvolution: validation using diffusion-weighted imaging phantom data. NeuroImage. 2008;42(2):617–25.

    Article  PubMed  Google Scholar 

Download references

Study funding

Friedreich Ataxia Research Association (Australasia), Friedreich Ataxia Research Alliance (USA) and Murdoch Childrens Research Institute. HA received a Melbourne International Fee Remission Scholarship and a Melbourne International Research Scholarship. GFE is an NHMRC Principal Research Fellow (#1003993).

Conflict of Interest

Dr. Hamed Akhlaghi reports no disclosures.

Mr. Johnson Yu reports no disclosures.

Dr Louise Corben reports no disclosures.

Associate Professor Nellie Georgiou-Karistianis reports no disclosures.

Emeritus Professor John L. Bradshaw reports no disclosures.

Professor Elsdon Storey has received honoraria (payable to his institution) from Pfizer for lecturing on non-drug related issues at an education course. He is a co-investigator on an NIH trial for which Merck is providing active drug (aspirin and placebo).

Professor Martin B. Delatycki is Associate Editor for BMC Neurology, he receives grants from NHMRC, Friedreich Ataxia Research Alliance, Friedreich Ataxia Research Association, and he is on the Pfizer Australia Neuroscience Grant Panel.

Professor Gary Egan reports no disclosures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Akhlaghi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akhlaghi, H., Yu, J., Corben, L. et al. Cognitive Deficits In Friedreich Ataxia Correlate with Micro-structural Changes in Dentatorubral Tract. Cerebellum 13, 187–198 (2014). https://doi.org/10.1007/s12311-013-0525-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-013-0525-4

Keywords

Navigation