Skip to main content
Log in

The Emotional Cerebellum

  • Review
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Great attention has been given so far to cerebellar control of posture and of skilled movements despite the well-demonstrated interconnections between the cerebellum and the autonomic nervous system. Here is a review of the link between these two structures and a report on the recently acquired evidence for its involvement in the world of emotions. In rodents, the reversible inactivation of the vermis during the consolidation or the reconsolidation period hampers the retention of the fear memory trace. In this region, there is a long-term potentiation of both the excitatory synapses between the parallel fibres and the Purkinje cells and of the feed-forward inhibition mediated by molecular layer interneurons. This concomitant potentiation ensures the temporal fidelity of the system. Additional contacts between mossy fibre terminals and Golgi cells provide morphological evidence of the potentiation of another feed-forward inhibition in the granular layer. Imaging experiments show that also in humans the cerebellum is activated during mental recall of emotional personal episodes and during learning of a conditioned or unconditioned association involving emotions. The vermis participates in fear learning and memory mechanisms related to the expression of autonomic and motor responses of emotions. In humans, the cerebellar hemispheres are also involved at a higher emotional level. The importance of these findings is evident when considering the cerebellar malfunctioning in psychiatric diseases like autism and schizophrenia which are characterized behaviourally by emotion processing impairments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Glickstein M, Strata P, Voogd J. Cerebellum: history. Neuroscience. 2009;162:549–59.

    Article  CAS  PubMed  Google Scholar 

  2. Malacarne V. Nuova esposizione della vera struttura del cervelletto umano. Torino: Briolo; 1776.

  3. Malacarne V, Bonnet C. Sulla nevro-encefalotomia. Lettere anatomico-fisiologiche di Vincenzo Malacarne e di Carlo Bonnet. Pavia: s.i.t.; 1791.

  4. Rolando L. Saggio sopra le vera struttura del cervello dell’uomo e degli animali e sopra le funzioni del sistema nervoso. Sassari: Stamperia da S.S.R.M; 1809.

  5. Flourens P. Recherches expérimentales sur les propriétés et les fonctions du système nerveux dans les animaux vertébrés. Paris: Crevot; 1824.

  6. Ito M. The cerebellum and neural control. New York: Raven Press;1984.

  7. Dow RS, Moruzzi G. The physiology and pathology of the cerebellum. Minneapolis: The University of Minnesota Press; 1958.

  8. Leiner HC, Leiner AL, Dow RS. Does the cerebellum contribute to mental skills? Behav Neurosci. 1986;100:443–54.

  9. Sultan F. Analysis of mammalian brain architecture. Nature. 2002;415:133–4.

  10. Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32:413–34.

  11. Petersen SE, Fox PT, Posner MI, Mintun M, Raichle ME. Positron emission tomographic studies of the processing of single words. J Cogn Neurosci. 1989;1:153–70.

  12. Doron KW, Funk CM, Glickstein M. Fronto-cerebellar circuits and eye movement control: a diffusion imaging tractography study of human cortico-pontine projections. Brain Res. 2010;1307:63–71.

  13. Smith Jr OA, Nathan MA. Inhibition of the carotid sinus reflex by stimulation of the inferior olive. Science. 1966;154:674–5.

  14. Snider RS. Recent contribution to the anatomy and physiology of the cerebellum. Arch Neurol Psychiatry. 1950;64:196–219.

  15. Aas JE, Brodal P. Demonstration of topographically organized projections from the hypothalamus to the pontine nuclei: an experimental anatomical study in the cat. J Comp Neurol. 1988;268:313–28.

    Article  CAS  PubMed  Google Scholar 

  16. Anand BK, Malhotra CL, Singh B, Dua S. Cerebellar projections to limbic system. J Neurophysiol. 1959;22:451–7.

  17. Dietrichs E, Haines DE. Observations on the cerebello-hypothalamic projection, with comments on non-somatic cerebellar circuits. Arch Ital Biol. 1985;123:33–9.

  18. Haines DE, Dietrichs E, Sowa TE. Hypothalamo-cerebellar and cerebello-hypothalamic pathways: a review and hypothesis concerning cerebellar circuits which may influence autonomic centers affective behavior. Brain Behav Evol. 1984;24:198–220.

  19. Supple Jr WF. Hypothalamic modulation of Purkinje cell activity in the anterior cerebellar vermis. Neuroreport. 1993;4:979–82.

  20. Newman PP, Paul DH. The representation of some visceral afferents in the anterior lobe of the cerebellum. J Physiol. 1969;182:195–208

  21. Newman PP, Paul DH. The projection of splanchnic afferents on the cerebellum of the cat. J Physiol. 1969;202:223–7.

  22. Rubia FJ. The projection of visceral afferents to the cerebellar cortex of the cat. Pflugers Arch. 1970;320:97–110.

  23. Langhof H, Höppener U, Rubia FJ. Climbing fiber responses to splanchnic nerve stimulation. Brain Res. 1973;53:232–6.

  24. Perrin J, Crousillat J. Responses of single units in the inferior olive nucleus to stimulation of the splanchnic afferents in the cat. J Auton Nerv Syst. 1980;2:15–22.

  25. Perciavalle V, Apps R, Bracha V, Delgado-García JM, Gibson AR, Leggio M, et al. Consensus paper: current views on the role of cerebellar interpositus nucleus in movement control and emotion. Cerebellum. 2013;12:738–57.

  26. Ledoux JE. Emotion circuits in the brain. Annu Rev Neurosci. 2000;23:155–84.

  27. Sacchetti B, Scelfo B, Strata P. Cerebellum and emotional behavior. Neuroscience. 2009;162:756–62.

  28. Schmahmann JD. From movement to thought: anatomic substrates of the cerebellar contribution to cognitive processing. Hum Brain Mapp. 1996;4:174–98.

  29. Berntson GG, Torello MW. The paleocerebellum and the integration of behavioural function. Physiol Psychol. 1982;10:2–12.

  30. Snider RS, Maiti A. Cerebellar contributions to the Papez circuit. J Neurosci Res. 1976;2:133–46.

  31. Supple WFJR, Leaton RN, Fanselow MS. Effects of cerebellar vermal lesions on species-specific fear responses, neophobia, and taste-aversion learning in rats. Physiol Behav. 1987;39:579–86.

  32. Supple Jr WF, Kapp BS. The anterior cerebellar vermis: essential involvement in classically conditioned bradycardia in the rabbit. J Neurosci. 1993;13:3705–11.

  33. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121:561–79.

  34. Maschke M, Schugens M, Kindsvater K, Drepper J, Kolb FP, Diener HC, et al. Fear conditioned changes of heart rate in patients with medial cerebellar lesions. J Neurol Neurosurg Psychiatry. 2002;72:116–8.

  35. Sacchetti B, Baldi E, Lorenzini CA, Bucherelli C. Cerebellar role in fear-conditioning consolidation. Proc Natl Acad Sci U S A. 2002;99:8406– 11.

  36. Sacchetti B, Sacco T, Strata P. Reversible inactivation of amygdala and cerebellum but not perirhinal cortex impairs reactivated fear memories. Eur J Neurosci. 2007;25:2875–84.

  37. Leaton RN, Supple Jr WF. Cerebellar vermis: essential for long-term habituation of the acoustic startle response. Science. 1986;232:513–5.

  38. Lopiano L, de’Sperati C, Montarolo PG. Long-term habituation of the acoustic startle response: role of the cerebellar vermis. Neuroscience. 1990;35:79–84.

  39. Batini C, Benedetti F, Buisseret-Delmas C, Montarolo PG, Strata P. Metabolic activity of intracerebellar nuclei in the rat: effect of inferior olive inactivation. Exp Brain Res. 1984;54:259–65.

  40. Raichle ME, Mintun MA. Brain work and brain imaging. Annu Rev Neurosci. 2006;29:449–76.

  41. Ploghaus A, Tracey I, Gati JS, Clare S, Menon RS, Matthews PM, et al. Dissociating pain from its anticipation in the human brain. Science. 1999;284:1979–81.

  42. Damasio AR, Grabowski TJ, Bechara A, Damasio H, Ponto LL, Parvizi J, et al. Subcortical and cortical brain activity during the feeling of selfgenerated emotions. Nat Neurosci. 2000;3:1049–56.

  43. Singer T, Seymour B, O'doherty J, Kaube H, Dolan RJ, Frith CD. Empathy for pain involves the affective but not sensory components of pain. Science. 2004;303:1157–62.

  44. Supple Jr WF, Sebastiani L, Kapp BS. Purkinje cell responses in the anterior cerebellar vermis during Pavlovian fear conditioning in the rabbit. Neuroreport. 1993;4:975–8.

  45. Marr D. A theory of cerebellar function. J Physiol. 1969;202:437–70.

  46. Albus JS. A theory of cerebellar function. Math Biosci. 1971;10:25–61.

    Article  Google Scholar 

  47. Ito M, Kano M. Long-lasting depression of parallel fiber-Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neurosci Lett. 1982;33:253–8.

  48. Lev-Ram V,Wong ST, Storm DR, Tsien RY. A new form of cerebellar long-term potentiation is postsynaptic and depends on nitric oxide but not cAMP. Proc Natl Acad Sci U S A. 2002;99:8389–93.

  49. Lev-Ram V, Mehta SB, Kleinfeld D, Tsien RY. Reversing cerebellar long-term depression. Proc Natl Acad Sci U S A. 2003;100:15989–93.

  50. Rogan MT, Stäubli UV, LeDoux JE. AMPA receptor facilitation accelerates fear learning without altering the level of conditioned fear acquired. J Neurosci. 1997;17:5928–35.

  51. Sacchetti B, Scelfo B, Tempia F, Strata P. Long-term synaptic changes induced in the cerebellar cortex by fear conditioning. Neuron. 2004;42:973–82.

  52. Gao Z, van Beugen BJ, De Zeeuw CI. Distributed synergistic lasticity and cerebellar learning. Nat Rev Neurosci. 2012;13:619–35.

  53. Ly R, Bouvier G, Schonewille M, Arabo A, Rondi-Reig L, Léna C, et al. T-type channel blockade impairs long-term potentiation at the parallel fiber-Purkinje cell synapse and cerebellar learning. Proc Natl Acad Sci U S A. 2013;110:20302–7.

  54. Rahmati N, Owens CB, Bosman LW, Spanke JK, Lindeman S, Gong W, et al. Cerebellar potentiation and learning a whisker-based object localization task with a time response window. J Neurosci. 2014;34:1949–62.

  55. Zhu L, Scelfo B, Hartell NA, Strata P, Sacchetti B. The effects of fear conditioning on cerebellar LTP and LTD. Eur J Neurosci. 2007;26:219–27.

  56. Berthier NE, Moore JW. Cerebellar Purkinje cell activity related to the classically conditioned nictitating membrane response. Exp Brain Res. 1986;63:341–50.

  57. Gould TJ, Steinmetz JE. Changes in rabbit cerebellar cortical and interpositus nucleus activity during acquisition, extinction, and backward classical eyelid conditioning. Neurobiol Learn Mem. 1996;65:17–34.

  58. Thompson RF. Neural mechanisms of classical conditioning in mammals. Philos Trans R Soc Lond B Biol Sci. 1990;2:331–7.

  59. Schreurs BG, Tomsic D, Gusev PA, Alkon DL. Dendritic excitability microzones and occluded long-term depression after classical conditioning of the rabbit’s nictitating membrane response. J Neurophysiol. 1997;77:86–92.

  60. Schreurs BG, Gusev PA, Tomsic D, Alkon DL, Shi T. Intracellular correlates of acquisition and long-term memory of classical conditioning in Purkinje cell dendrites in slices of rabbit cerebellar lobule HVI. J Neurosci. 1998;18:5498–507.

  61. Zhu L, Scelfo B, Tempia F, Sacchetti B, Strata P. Membrane excitability and fear conditioning in cerebellar Purkinje cell. Neuroscience. 2006;140:801–10.

  62. Lang EJ, Paré D. Similar inhibitory processes dominate the responses of cat lateral amygdaloid projection neurons to their various afferents. J Neurophysiol. 1997;77:341–52.

  63. Li XF, Armony JL, Ledoux JE. GABAA and GABAB receptors differentially regulate synaptic transmission in the auditory thalamo-amygdala pathway: an in vivo microiontophoretic study and a model. Synapse. 1996;24:115–24.

  64. Wiltgen BJ, Sanders MJ, Ferguson C, Homanics GE, Fanselow MS. Trace fear conditioning is enhanced in mice lacking the delta subunit of the GABAA receptor. Learn Mem. 2005;12:327–33.

  65. Eccles JC, Ito M, Szentàgothai J. The cerebellum as a neuronal machine. Berlin: Springer; 1967.

  66. Scelfo B, Sacchetti B, Strata P. Learning-related long-term potentiation of inhibitory synapses in the cerebellar cortex. Proc Natl Acad Sci U S A. 2008;105:769–74.

  67. Pouille F, Scanziani M. Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition. Science. 2001;293:1159–63.

  68. Lamsa K, Heeroma JH, Kullmann DM. Hebbian. LTP in feed-forward inhibitory interneurons and the temporal fidelity of input discrimination. Nat Neurosci. 2005;916-24.

  69. Mittmann W, Koch U, Hausser M. Feed-forward inhibition shapes the spike output of cerebellar Purkinje cells. J Physiol. 2005;563:369–78.

  70. Ruediger S, Vittori C, Bednarek E, Genoud C, Strata P, Sacchetti B, et al. Learning-related feedforward inhibitory connectivity growth required for memory precision. Nature. 2011;473:514–8.

  71. Caroni P, Chowdhury A, Lahr M. Synapse rearrangements upon learning: from divergent-sparse connectivity to dedicated sub-circuits. Trends Neurosci. 2014;37:604–14.

  72. LaBar KS, Cabeza R. Cognitive neuroscience of emotional memory. Nat Rev Neurosci. 2006;7:54–64.

  73. Heath RG, Franklin DE, Shraberg D. Gross pathology of the cerebellum in patients diagnosed and treated as functional psychiatric disorders. J Nerv Ment Dis. 1979;167:585–92.

  74. Lungu O, Barakat M, Laventure S, Debas K, Proulx S, Luck D, et al. The incidence and nature of cerebellar findings in schizophrenia: a quantitative review of fMRI literature. Schizophr Bull. 2012;39:797–806.

  75. Picard H, Amado I, Mouchet-Mages S, Olié JP, Krebs MO. The role of the cerebellum in schizophrenia: an update of clinical, cognitive, and functional evidences. Schizophr Bull. 2008;34:155–72.

  76. Shakiba A. The role of the cerebellum in neurobiology of psychiatric disorders. Neurol Clin. 2014;32:1105–15.

  77. Brielmaier J, Matteson PG, Silverman JL, Senerth JM, Kelly S, Genestine M, et al. Autism-relevant social abnormalities and cognitive deficits in engrailed-2 knockout mice. PLoS One. 2012;7(7):e40914.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Fatemi SH, Aldinger KA, Ashwood P, Bauman ML, Blaha CD, Blatt GJ, et al. Consensus paper: pathological role of the cerebellum in autism. Cerebellum. 2012;11:777–807.

  79. Piochon C, Kloth AD, Grasselli G, Titley HK, Nakayama H, Hashimoto K, et al. Cerebellar plasticity and motor learning deficits in a copy-number variation mouse model of autism. Nat Commun. 2014;5:5586.

  80. Reith RM, McKenna J, Wu H, Hashmi SS, Cho SH, Dash PK, et al. Loss of Tsc2 in Purkinje cells is associated with autistic-like behavior in a mouse model of tuberous sclerosis complex. Neurobiol Dis. 2013;51:93–103.

  81. Tsai PT, Hull C, Chu Y, Greene-Colozzi E, Sadowski AR, Leech JM, et al. Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature. 2012;488:647–51.

Download references

Conflict of Interest

The author declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piergiorgio Strata.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strata, P. The Emotional Cerebellum. Cerebellum 14, 570–577 (2015). https://doi.org/10.1007/s12311-015-0649-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-015-0649-9

Keywords

Navigation