Skip to main content

Advertisement

Log in

Hereditary Ataxias in Cuba: A Nationwide Epidemiological and Clinical Study in 1001 Patients

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The prevalence estimations of hereditary ataxias are biased since most epidemiological studies are confined to isolated geographical regions and few nationwide studies are available. The study aims to assess the prevalence, distribution, and neurological features of the Cuban population with hereditary ataxias. A nationwide epidemiological study of hereditary ataxias was conducted in Cuba between March 2017 and June 2018. Patients were scheduled at the Cuban ataxia research center, various hospitals, or at their homes. Demographic and clinical variables were obtained through standardized questionnaires and validated clinical tools. Overall, 1001 patients were diagnosed with hereditary ataxias for a nationwide prevalence of 8.91 cases/100.000 inhabitants. Spinocerebellar ataxia type 2 (SCA2) was the commonest subtype, with highest prevalences at Holguín province (47.86/100.000), and a broad dissemination in the whole country. Most of neurological features were common between all SCA cohorts, but the frequencies of some of them varied between distinct subtypes. Within the SCA2 cohort, significant influences of long mutation size and higher disease duration over the muscle atrophy and oculomotor disorders were observed. Besides, higher disease durations were associated with resting tremor and dysphagia, whereas shorter disease durations were associated with hyperreflexia. The spreading of SCA2 to whole country and the documented raising of its prevalence set the rationales for higher-scope medical care and research strategies, supported in collaborative research networks. The wide epidemiological, clinical, and genetic characterization of this founder SCA2 population identifies this homogeneous cohort as an attractive source for the development of future clinical-genetic and therapeutic researches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jayadev S, Bird TD. Hereditary ataxias: overview. Genet Med. 2013;15(9):673–83.

    Article  CAS  PubMed  Google Scholar 

  2. Hersheson J, Haworth A, Houlden H. The inherited ataxias: genetic heterogeneity, mutation databases, and future directions in research and clinical diagnostics. Hum Mutat. 2012;33(9):1324–32.

    Article  CAS  PubMed  Google Scholar 

  3. Ashizawa T, Öz G, Paulson HL. Spinocerebellar ataxias: prospects and challenges for therapy development. Nat Rev Neurol. 2018;14(10):590–605.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Klockgether T, Mariotti C, Paulson HL. Spinocerebellar ataxia. Nat Rev Dis Primers. 2019;5(1):24.

    Article  PubMed  Google Scholar 

  5. Anheim M, Tranchant C, Koenig M. The autosomal recessive cerebellar ataxias. N Engl J Med. 2012;366:636–46.

    Article  CAS  PubMed  Google Scholar 

  6. Fogel BL. Autosomal-recessive cerebellar ataxias. Handb Clin Neurol. 2018;147:187–209.

    Article  PubMed  Google Scholar 

  7. Ruano L, Melo C, Silva MC, Coutinho P. The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies. Neuroepidemiology. 2014;42:174–83.

    Article  PubMed  Google Scholar 

  8. Bird TD. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. Hereditary Ataxia overview. GeneReviews®. Seattle (WA): University of Washington, Seattle; 1993-2017.

    Google Scholar 

  9. Velázquez-Pérez L, Cruz GS, Santos Falcon N, Enrique Almaguer Mederos L, Escalona Batallan K, Rodríguez Labrada R, et al. Molecular epidemiology of spinocerebellar ataxias in Cuba: insights into SCA2 founder effect in Holguin. Neurosci Lett. 2009;454(2):157–60.

    Article  CAS  PubMed  Google Scholar 

  10. Auburger G, Diaz GO, Capote RF, Sanchez SG, Pérez MP, del Cueto ME, et al. Autosomal dominant ataxia: genetic evidence for locus heterogeneity from a Cuban founder-effect population. Am J Hum Genet. 1990;46(6):1163–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Gaspar C, Lopes-Cendes I, Hayes S, Goto J, Arvidsson K, Dias A, et al. Ancestral origins of the Machado-Joseph disease mutation: a worldwide haplotype study. Am J Hum Genet. 2001;68:523–8.

    Article  CAS  PubMed  Google Scholar 

  12. Martins S, Calafell F, Gaspar C, Wong VC, Silveira I, Nicholson GA, et al. Asian origin for the worldwide-spread mutational event in Machado-Joseph disease. Arch Neurol. 2007;64:1502–8.

    Article  PubMed  Google Scholar 

  13. Jardim LB, Silveira I, Pereira ML, Ferro A, Alonso I, Do Céu Moreira M, et al. A survey of spinocerebellar ataxia in South Brazil - 66 new cases with Machado-Joseph disease, SCA7, SCA8, or unidentified disease-causing mutations. J Neurol. 2001;248(10):870–6.

    Article  CAS  PubMed  Google Scholar 

  14. Souza GN, Kersting N, Krum-Santos AC, Santos AS, Furtado GV, Pacheco D, et al. Spinocerebellar ataxia type 3/Machado-Joseph disease: segregation patterns and factors influencing instability of expanded CAG transmissions. Clin Genet. 2016;90(2):134–40.

    Article  CAS  PubMed  Google Scholar 

  15. Magaña JJ, Gómez R, Maldonado-Rodríguez M, Velazquez-Pérez L, Tapia-Guerrero YS, Cortes H, et al. Origin of the spinocerebellar ataxia type 7 gene mutation in Mexican population. Cerebellum. 2013;12(6):902–5.

    Article  CAS  PubMed  Google Scholar 

  16. Magaña JJ, Tapia-Guerrero YS, Velázquez-Pérez L, Cerecedo-Zapata CM, Maldonado-Rodríguez M, Jano-Ito JS, et al. Analysis of CAG repeats in five SCA loci in Mexican population: epidemiological evidence of a SCA7 founder effect. Clin Genet. 2014;85(2):159–65.

    Article  CAS  PubMed  Google Scholar 

  17. Almeida T, Alonso I, Martins S, Ramos EM, Azevedo L, Ohno K, et al. Ancestral origin of the ATTCT repeat expansion in spinocerebellar ataxia type 10 (SCA10). PLoS One. 2009;4(2):e4553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bushara K, Bower M, Liu J, McFarland KN, Landrian I, Hutter D, et al. Expansion of the spinocerebellar ataxia type 10 (SCA10) repeat in a patient with Sioux native American ancestry. PLoS One. 2013;8(11):e81342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hirayama K, Takayanagi T, Nakamura R, Yanagisawa N, Hattori T, Kita K, et al. Spinocerebellar degenerations in Japan: a nationwide epidemiological and clinical study. Acta Neurol Scand Suppl. 1994;153:1–22.

    Article  CAS  PubMed  Google Scholar 

  20. Zhao Y, Tan EK, Law HY, Yoon CS, Wong MC, Ng I. Prevalence and ethnic differences of autosomal-dominant cerebellar ataxia in Singapore. Clin Genet. 2002;62:478–81.

    Article  CAS  PubMed  Google Scholar 

  21. Joo BE, Lee CN, Park KW. Prevalence rate and functional status of cerebellar ataxia in Korea. Cerebellum. 2012;11:733–8.

    Article  PubMed  Google Scholar 

  22. Coutinho P, Ruano L, Loureiro JL, Cruz VT, Barros J, Tuna A, et al. Hereditary ataxia and spastic paraplegia in Portugal: a population-based prevalence study. JAMA Neurol. 2013;70:746–55.

    Article  PubMed  Google Scholar 

  23. Vallés L, Estrada GL, Bastecherrea SL. Algunas formas de heredoataxia en una región de Cuba. Rev Neurol (Cubana). 1978;27:163–76.

    Google Scholar 

  24. VelázquezPérez L, Santos FN, García R, Paneque HM, Hechavarría PR. Epidemiología de la Ataxia Cubana. Rev Neurol. 2001;32(7):606–11.

    Google Scholar 

  25. Mariño TC, Zaldivar YG, Mesa JM, Mederos LA, Rodríguez RA, Gotay DA, et al. Low predisposition to instability of the Friedreich ataxia gene in Cuban population. Clin Genet. 2010;77(6):598–600.

    Article  PubMed  Google Scholar 

  26. González-Zaldívar Y, Vázquez-Mojena Y, Laffita-Mesa JM, Almaguer-Mederos LE, Rodríguez-Labrada R, Sánchez-Cruz G, et al. Epidemiological, clinical, and molecular characterization of Cuban families with spinocerebellar ataxia type 3/Machado-Joseph disease. Cerebellum Ataxias. 2015;2:1.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rodríguez-Labrada R, Medrano-Montero J, Velázquez-Pérez L. Hereditary ataxias in Cuba: results and impact of a comprehensive, multidisciplinary project. MEDICC Rev. 2019;21(4):39–45.

    PubMed  Google Scholar 

  28. Schmitz-Hubsch T, du Montcel ST, Baliko L, Berciano J, Boesch S, Depondt C, et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology. 2006;66:1717–20.

    Article  CAS  PubMed  Google Scholar 

  29. Schmitz-Hübsch T, Coudert M, Bauer P, Giunti P, Globas C, Baliko L, et al. Spinocerebellar ataxia types 1, 2, 3, and 6: disease severity and nonataxia symptoms. Neurology. 2008;71(13):982–9.

    Article  PubMed  Google Scholar 

  30. Folstein MF, Folstein SE, McHugh PR. Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. J Psych Res. 1975;12:189–98.

    Article  CAS  Google Scholar 

  31. Hernandez A, Magarino C, Gispert S, Santos N, Lunkes A, Orozco G, et al. Genetic mapping of the spinocerebellar ataxia 2 (SCA2) locus on chromosome 12q23-q24.1. Genomics. 1995;25:433–5.

    Article  CAS  PubMed  Google Scholar 

  32. Allotey R, Twells R, Cemal C, Norte BS, Weissenbach J, Pook M, et al. The spinocerebellar ataxia 2 locus is located within a 3-cm interval on chromosome 12q23–24.1. Am J Hum Genet. 1995;57:185–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sena LS, Castilhos RM, Mattos EP, Furtado GV, Pedroso JL, Barsottini O, et al. Selective forces related to spinocerebellar ataxia type 2. Cerebellum. 2019;18(2):188–94.

    Article  CAS  PubMed  Google Scholar 

  34. Pulst SM, Nechiporuk A, Starkman S. Anticipation in spinocerebellar ataxia type 2. Nat Genet. 1993;5(1):8–10.

    Article  CAS  PubMed  Google Scholar 

  35. Almaguer-Mederos LE, Mesa JML, González-Zaldívar Y, Almaguer-Gotay D, Cuello-Almarales D, Aguilera-Rodríguez R, et al. Factors associated with ATXN2 CAG/CAA repeat intergenerational instability in spinocerebellar ataxia type 2. Clin Genet. 2018;94(3–4):346–50.

    Article  CAS  PubMed  Google Scholar 

  36. Laffita-Mesa JM, Velázquez-Pérez LC, Santos Falcón N, Cruz-Mariño T, González Zaldívar Y, Vázquez Mojena Y, et al. Unexpanded and intermediate CAG polymorphisms at the SCA2 locus (ATXN2) in the Cuban population: evidence about the origin of expanded SCA2 alleles. Eur J Hum Genet. 2012;20(1):41–9.

    Article  CAS  PubMed  Google Scholar 

  37. Takano H, Cancel G, Ikeuchi T, Lorenzetti D, Mawad R, Stevanin G, et al. Close associations between prevalences of dominantly inherited spinocerebellar ataxias with CAG-repeat expansions and frequencies of large normal CAG alleles in Japanese and Caucasian populations. Am J Hum Genet. 1998;63:1060–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Diallo A, Jacobi H, Cook A, Giunti P, Parkinson MH, Labrum R, et al. Prediction of survival with long-term disease progression in Most common spinocerebellar ataxia. Mov Disord. 2019;34(8):1220–7.

    Article  PubMed  Google Scholar 

  39. Antenora A, Bruzzese D, Lieto M, Roca A, Florio MT, Peluso S, et al. Predictors of survival in spinocerebellar ataxia type 2 population from Southern Italy. Neurol Sci. 2018;39(11):1857–60.

    Article  PubMed  Google Scholar 

  40. Almaguer-Mederos LE, Aguilera Rodríguez R, González Zaldivar Y, Almaguer Gotay D, Cuello Almarales D, Laffita Mesa J, et al. Estimation of survival in spinocerebellar ataxia type 2 Cuban patients. Clin Genet. 2013;83(3):293–4.

    Article  CAS  PubMed  Google Scholar 

  41. Sequeiros J, Martins S, Silveira I. Epidemiology and population genetics of degenerative ataxias. Handb Clin Neurol. 2012;103:227–51.

    Article  PubMed  Google Scholar 

  42. Rodríguez-Labrada R, Velazquez-Pérez L. Alterations of eye movements in polyglutamine diseases. Rev Mex Neuroc. 2013;14(3):60–4.

    Google Scholar 

  43. Velázquez-Pérez L, Seifried C, Santos-Falcón N, Abele M, Ziemann U, Martínez-Góngora E, et al. Saccade velocity is controlled by polyglutamine size in spinocerebellar ataxia type 2 (SCA2). Ann Neurol. 2004;56(3):444–7.

    Article  PubMed  Google Scholar 

  44. Rodríguez-Labrada R, Vázquez-Mojena Y, Canales-Ochoa N, Medrano-Montero J, Velázquez-Pérez L. Heritability of saccadic eye movements in Spinocerebellar ataxia type 2: insights into an endophenotype marker. Cerebellum Ataxias. 2017;4:19. https://doi.org/10.1186/s40673-017-0078-2.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Rodríguez-Labrada R, Velázquez-Pérez L, Auburger G, Ziemann U, Canales N, Medrano J, et al. Measures of saccade changes improve power for clinical trials. Movement Disorders. 2016;31(4):570–8.

    Article  CAS  PubMed  Google Scholar 

  46. Velázquez-Pérez L, Seifried C, Abele M, Wirjatijasa F, Rodríguez-Labrada R, Santos-Falcón N, et al. Saccade velocity is reduced in presymptomatic spinocerebellar ataxia type 2. Clin Neurophysiol. 2009;120:632–5.

    Article  PubMed  Google Scholar 

  47. Oh AK, Jacobson KM, Jen JC, Baloh RW. Slowing of voluntary and involuntary saccades: an early sign in spinocerebellar ataxia type 7. Ann Neurol. 1999;49(6):801–4.

    Article  Google Scholar 

  48. Moro A, Munhoz RP, Arruda WO, Raskin S, Teive HAG. Clinic al relevance of “bulging eyes” for the differential diagnosis of spinocerebellar ataxias. Arq Neuropsiquiatr. 2013;71:428–30.

    Article  PubMed  Google Scholar 

  49. Ragno M, Perretti AC, Castaldo I, Scarcella M, Acciarri S, Manganelli F, et al. Multimodal electrophysiologic follow-up study in 3 mutated but presymptomatic members of a spinocerebellar ataxia type 1 (SCA1) family. Neurol Sci. 2005;26:67–71.

    Article  CAS  PubMed  Google Scholar 

  50. Velázquez-Pérez L, Cerecedo-Zapata CM, Hernández-Hernández O, Martínez-Cruz E, Tapia-Guerrero YS, González-Piña R, et al. A comprehensive clinical and genetic study of a large Mexican population with spinocerebellar ataxia type 7. Neurogenetics. 2015;16:11–21.

    Article  CAS  PubMed  Google Scholar 

  51. Rodríguez-Labrada R, Velázquez-Pérez L, Ziemann U. Transcranial magnetic stimulation in hereditary ataxias: diagnostic utility, pathophysiological insight and treatment. Clin Neurophysiol. 2018;129(8):1688–98.

    Article  PubMed  Google Scholar 

  52. Kanai K, Kuwabara S. Motor nerve hyperexcitability and muscle cramps in Machado-Joseph disease. Arch Neurol. 2009;66(1):139.

    Article  PubMed  Google Scholar 

  53. Jacobi H, Reetz K, Tezenas du Montcel S, Bauer P, Mariotti C, Nanetti L, et al. Biological and clinical characteristics of individuals at risk for spinocerebellar ataxia types 1, 2, 3, and 6 in the longitudinal RISCA study: analysis of baseline data. Lancet Neurol. 12(7):650–8.

  54. Velázquez-Pérez L, Rodríguez-Labrada R, Canales-Ochoa N, Montero JM, Sánchez-Cruz G, Aguilera-Rodríguez R, et al. Progression of early features of spinocerebellar ataxia type 2 in individuals at risk: a longitudinal study. Lancet Neurol. 2014;13(5):482–9.

    Article  CAS  PubMed  Google Scholar 

  55. Velázquez-Pérez L, Rodríguez-Labrada R, Cruz-Rivas EM, Fernández-Ruiz J, Vaca-Palomares I, Lilia-Campins J, et al. Comprehensive study of early features in spinocerebellar ataxia 2: delineating the prodromal stage of the disease. Cerebellum. 2014;13(5):568–79.

    Article  PubMed  Google Scholar 

  56. Velázquez-Pérez L, González Gay OT, Rodríguez-Labrada R, Aguilera Rodríguez R, Canales Ochoa N, et al. Preliminary evaluation of the effect of Compvit-B on memory and learning processes in patients with SCA2. Rev Cub Inv Biomed. 2014;33:02.

    Google Scholar 

  57. Boesch SM, Donnemiller E, Muller J, Seppi K, Weirich-Schwaiger H, Poewe W, et al. Abnormalities of dopaminergic neurotransmission in SCA2: a combined 123I-betaCIT and 123I-IBZM SPECT study. Mov Disord. 2004;19:1320–5.

    Article  PubMed  Google Scholar 

  58. Wullner U, Reimold M, Abele M, Burk K, Minnerop M, Dohmen BM, et al. Dopamine transporter positron emission tomography in spinocerebellar ataxias type 1, 2, 3, and 6. Arch Neurol. 2005;62:1280–5.

    Article  PubMed  Google Scholar 

  59. Gwinn-Hardy K, Chen JY, Liu HC, Liu TY, Boss M, Seltzer W, et al. Spinocerebellar ataxia type 2 with parkinsonism in ethnic Chinese. Neurology. 2000;55:800–5.

    Article  CAS  PubMed  Google Scholar 

  60. Charles P, Camuzat A, Benammar N, Ma J, Xie S, Zhang Y, et al. Are interrupted SCA2 CAG repeat expansions responsible for parkinsonism? Neurology. 2007;69(21):1970–5.

    Article  CAS  PubMed  Google Scholar 

  61. Infante J, Berciano J, Volpini V, Corral J, Polo JM, Pascual J, et al. Spinocerebellar ataxia type 2 with levodopa-responsive parkinsonism culminating in motor neuron disease. Mov Disord. 2004;19:848–52.

    Article  PubMed  Google Scholar 

  62. Nanetti L, Fancell R, Tomasello C, Gellera, Pareyson D, Mariotti C. Rare association of motor neuron disease and spinocerebellar ataxia type 2 (SCA2): a new case and review of the literature. J Neurol. 2009;256:1926–8.

    Article  PubMed  Google Scholar 

  63. Elden AC, Kim HJ, Hart MP, et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature. 2010;466:1069–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Farg MA, Soo KY, Warraich ST, Sundaramoorthy V, Blair IP, Atkin JD. Ataxin-2 interacts with FUS and intermediate-length polyglutamine expansions enhance FUS-related pathology in amyotrophic lateral sclerosis. Hum Mol Genet. 2013;22:717–28.

    Article  CAS  PubMed  Google Scholar 

  65. Huynh DP, Del Bigio MR, Ho DH, Pulst SM. Expression of ataxin-2 in brains from normal individuals and patients with Alzheimer's disease and spinocerebellar ataxia 2. Ann Neurol. 1999;45:232–41.

    Article  CAS  PubMed  Google Scholar 

  66. Lastres-Becker I, Nonis D, Eich F, Klinkenberg M, Gorospe M, Kötter P, et al. Mammalian ataxin-2 modulates translation control at the pre-initiation complex via PI3K/mTOR and is induced by starvation. Biochim Biophys Acta. 2016;1862(9):1558–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hodson N, Philp A. The Importance of mTOR trafficking for human skeletal muscle translational control. Exerc Sport Sci Rev. 2019;47(1):46–53.

    Article  PubMed  Google Scholar 

  68. Velazquez Perez L, Sanchez Cruz G, Canales Ochoa N, Rodríguez-Labrada R, Rodríguez-Diaz J, Almaguer-Mederos L, et al. Electrophysiological features in patients and presymptomatic relatives with spinocerebellar ataxia type 2. J Neurol Sci. 2007;263:158–64.

    Article  PubMed  Google Scholar 

  69. Doherty TJ. The influence of aging and sex on skeletal muscle mass and strength. Curr Opin Clin Nutr Metab Care. 2001;4(6):503–8.

    Article  CAS  PubMed  Google Scholar 

  70. Diallo A, Jacobi H, Schmitz-Hübsch T, Cook A, Labrum R, Durr A, et al. Body mass index decline is related to spinocerebellar ataxia disease progression. Mov Disord Clin Pract. 2017;4:689–97.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Lastres-Becker I, Brodesser S, Lütjohann D, Azizov M, Buchmann J, Hintermann E, et al. Insulin receptor and lipid metabolism pathology in ataxin 2 knock-out mice. Hum Mol Genet. 2008;17:1465–81.

    Article  CAS  PubMed  Google Scholar 

  72. Orozco DG, Estrada R, Perry T, Araña J, Fernández R, Gonzalez-Quevedo A, et al. Dominantly inherited olivopontocerebellar atrophy from eastern Cuba. Clinical, neuropathological and biochemical findings. J Neurol Sci. 1989;93:37–50.

    Article  CAS  PubMed  Google Scholar 

  73. Estrada R, Galarraga J, Orozco G, Nodarse A, Auburger G. Spinocerebellar ataxia 2 (SCA2): morphometric analyses in 11 autopsies. Acta Neuropathol. 1999;97:306–10.

    Article  CAS  PubMed  Google Scholar 

  74. Vaca-Palomares I, Díaz R, Rodríguez-Labrada R, Medrano-Montero J, Aguilera-Rodríguez R, Vázquez-Mojena Y, et al. Strategy use, planning, and rule acquisition deficits in spinocerebellar ataxia type 2 patients. J Int Psychol Soc. 2015;21(3):214–20.

    Google Scholar 

  75. Rodríguez-Labrada R, Velázquez-Pérez L, Ortega-Sánchez R, et al. Insights into cognitive decline in spinocerebellar ataxia type 2: a P300 event-related brain potential study. Cerebellum Ataxias. 2019;6:3.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Le Pira F, Giuffrida S, Maci T, Marturano L, Tarantello R, Zappalà G, et al. Dissociation between motor and cognitive impairments in SCA2: evidence from a follow-up study. J Neurol. 2007;254:1455–6.

    Article  PubMed  Google Scholar 

  77. Cruz-Mariño T, González-Zaldivar Y, Laffita-Mesa JM, Almaguer-Mederos L, Aguilera-Rodríguez R, Almaguer-Gotay D, et al. Uncommon features in Cuban families affected with Friedreich ataxia. Neurosci Lett. 2010;472(2):85–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank all ataxia patients and their families for their participation in the study, as well as all the health personnel and administrative entities who facilitated the development of this study.

Funding

We thank the Cuban Ministry of Public Health for providing funding for the study.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

LVP, JMM, and RRL: conceptualization, methodological design, statistical analysis, and study execution RRL: original draft preparationLVP: writing/review and editing and study supervisionNCO, JCA, FJCR, TGR, MOHO, YDB, RTV, LFA, NYCN, AASV, OGR, ISZ, NYNN, JGZ, ORSB, MBRB, AER, LAGR, YVM, YGZ, LEAM, and AML: study execution

All authors read and approved the final manuscript.

Corresponding author

Correspondence to Luis Velázquez-Pérez.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This study was approved by the Ethics Committee of the Center for the Research and Rehabilitation of Hereditary Ataxias (Holguín, Cuba) and was conducted according to the Declaration of Helsinki. Each subject gave written informed consent for participation in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velázquez-Pérez, L., Medrano-Montero, J., Rodríguez-Labrada, R. et al. Hereditary Ataxias in Cuba: A Nationwide Epidemiological and Clinical Study in 1001 Patients. Cerebellum 19, 252–264 (2020). https://doi.org/10.1007/s12311-020-01107-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-020-01107-9

Keywords

Navigation