Skip to main content

Advertisement

Log in

Speech Impairment in Cerebellar Ataxia Affects Naturalness More Than Intelligibility

  • Original Article
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The purpose of this analysis was to document intelligibility and naturalness in ataxia, a neurological condition that results from cerebellar damage. The cerebellum is important for normal speech production to scale and coordinate articulatory and laryngeal movements. The disruption of these cerebellar mechanisms has unique implications for how intelligibility and naturalness are affected in ataxia. The results of research on speech in ataxia have important clinical implications for assessment and treatment of individuals with ataxic dysarthria. Speech samples from 27 participants with ataxia and 28 age- and sex-matched control participants were assessed by nine speech-language pathology graduate students for intelligibility and naturalness. Intelligibility was measured as the percentage of words transcribed correctly, and naturalness was assessed as a subjective rating on a seven-point interval scale. Both intra- and inter-rater reliability were moderate to high for both intelligibility and naturalness. Speech intelligibility and naturalness were robustly decreased in the ataxia group compared to the control group; however, the difference was greater for measures of speech naturalness. There were robust relationships among dysarthria severity, length of diagnosis, and speech naturalness in speakers with ataxia, but there were no other robust effects for age, sex, or impact on quality of life for intelligibility or naturalness. Speech naturalness was more impaired than intelligibility in speakers with ataxia. Impaired naturalness can have debilitating consequences for communicative participation, effectiveness, and quality of life. Assessment and treatment for ataxic dysarthria should include aspects of prosodic control for speech naturalness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kent RD, Kent JF, Duffy JR, Thomas JE, Weismer G, Stuntebeck S. Ataxic dysarthria. J Speech Lang Hear Res. 2000;43(1–5):1275–89. https://doi.org/10.1044/jslhr.4305.1275.

    Article  CAS  PubMed  Google Scholar 

  2. Diener HH-C, Dichgans J. Pathophysiology of cerebellar ataxia. Mov Disord Off J Move Disord Soc. 1992;7(2):95–109. https://doi.org/10.1002/mds.870070202.

    Article  CAS  PubMed  Google Scholar 

  3. Gilman S, Bloedel JR, Lechtenberg R. Disorders of the cerebellum (No. 21). FA Davis Company. 1981.

  4. Ghez C. Muscles: effectors of the motor systems. Principles of Neural Science. 1981;548–63.

  5. Ito M. Movement and thought: identical control mechanisms by the cerebellum. In Trends in Neurosciences. 1993;16(11):448–50. https://doi.org/10.1016/0166-2236(93)90073-U (Elsevier).

    Article  CAS  Google Scholar 

  6. Miall RC. The cerebellum, predictive control and motor coordination. Novartis Found Symp. 1998;218:272–90. https://doi.org/10.1002/9780470515563.ch15.

    Article  CAS  PubMed  Google Scholar 

  7. Spencer KA, Slocomb DL. The neural basis of ataxic dysarthria. The Cerebellum. 2007;6:58–65. https://doi.org/10.1080/14734220601145459.

    Article  PubMed  Google Scholar 

  8. Blaney B, Hewlett N. Dysarthria and Friedreich’s ataxia: what can intelligibility assessment tell us? Int J Lang Commun Disord. 2007;42(1):19–37. https://doi.org/10.1080/13682820600690993.

    Article  PubMed  Google Scholar 

  9. Yorkston KM, Beukelman DR. Ataxic dysarthria: treatment sequences based on intelligibility and prosodic considerations. Journal of Speech and Hearing Disorders. 1981;46(4):398–404. https://doi.org/10.1044/jshd.4604.398.

    Article  CAS  PubMed  Google Scholar 

  10. Yorkston M, Beukelman D. Communication efficiency of dysarthric speakers as measured by sentence intelligibility and speaking rate. J Speech Hear Dis. 1981;46(3):286–301. https://doi.org/10.1044/jshd.4603.296.

    Article  Google Scholar 

  11. Duffy JR. Motor speech disorders-e-book: substrates, differential diagnosis, and management. Elsevier Health Sciences. 2013.

  12. Ruano L, Melo C, Silva MC, Coutinho P. The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies. Neuroepidemiology. 2014;42(3):174–83. https://doi.org/10.1159/000358801.

    Article  PubMed  Google Scholar 

  13. Van De Warrenburg BPC, Sinke RJ, Verschuuren-Bemelmans CC, Scheffer H, Brunt ER, Ippel PF, Maat-Kievit JA, Dooijes D, Notermans NC, Lindhout D, Knoers NVAM, Kremer HPH. Spinocerebellar ataxias in the Netherlands: prevalence and age at onset variance analysis. Neurology. 2002;58(5):702–8. https://doi.org/10.1212/WNL.58.5.702.

    Article  PubMed  Google Scholar 

  14. Bird TD. Hereditary ataxia overview. In: Adam MP, Mirzaa GM, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2022;1998 Oct 28 [Updated 2019 Jul 25]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1138/.

  15. Dworkin LA, Goldman RD, Zivin LS, Fuchs PC. Cerebellar toxicity following high-dose cytosine arabinoside. J Clin Oncol. 1985;3(5):613–6. https://doi.org/10.1200/JCO.1985.3.5.613.

    Article  CAS  PubMed  Google Scholar 

  16. Evidente VGH, Gwinn-Hardy KA, Caviness JN, Gilman S. Hereditary ataxias. Mayo Clin Proc. 2000;75(5):475–90.

    Article  CAS  PubMed  Google Scholar 

  17. Fadic R, Russell JA, Vedanarayanan VV, Lehar M, Kuncl RW, Johns DR. Sensory ataxic neuropathy as the presenting feature of a novel mitochondrial disease. Neurology. 1997;49(1):239–45. https://doi.org/10.1212/WNL.49.1.239.

    Article  CAS  PubMed  Google Scholar 

  18. Haubrich C, Kleiser N, Kosinski C, Mull M, Kröger BJ, Esser D, Fimm B, Huber W. Episodic dysarthria related to vascular medullary compression. In Journal of Neurology. 2010;257(2):296–9. https://doi.org/10.1007/s00415-009-5348-3 (Springer).

    Article  Google Scholar 

  19. Jen JC, Graves TD, Hess EJ, Hanna MG, Griggs RC, Baloh RW, Investigators C. Primary episodic ataxias: diagnosis, pathogenesis and treatment. Brain. 2007;130(10):2484–93.

    Article  CAS  PubMed  Google Scholar 

  20. Klein ES, Willbrand ML, Alvord LS. Cerebellar ataxia secondary to high-dose cytosine arabinoside (ARA-C) toxicity in treatment of acute leukemia: a case study. J Med Speech Lang Pathol. 1999;7(3):243–51.

    Google Scholar 

  21. Manto MU. Isolated cerebellar dysarthria associated with a heat stroke. Clin Neurol Neurosurg. 1996;98(1):55–6. https://doi.org/10.1016/0303-8467(95)00089-5.

    Article  CAS  PubMed  Google Scholar 

  22. Schmahmann JD, MacMore J, Vangel M. Cerebellar stroke without motor deficit: clinical evidence for motor and non-motor domains within the human cerebellum. Neuroscience. 2009;162(3):852–61. https://doi.org/10.1016/j.neuroscience.2009.06.023.

    Article  CAS  PubMed  Google Scholar 

  23. Shanmugarajah PD, Hoggard N, Currie S, Aeschlimann DP, Aeschlimann PC, Gleeson DC, Karajeh M, Woodroofe N, Grünewald RA, Hadjivassiliou M. Alcohol-related cerebellar degeneration: not all down to toxicity? Cerebellum & Ataxias. 2016;3(1):1–7. https://doi.org/10.1186/s40673-016-0055-1.

    Article  Google Scholar 

  24. Wilkins A. Cerebellar dysfunction in multiple sclerosis. In Frontiers in Neurology (Vol. 8, Issue JUN, p. 312). Frontiers Media S.A. 2017; https://doi.org/10.3389/fneur.2017.00312

  25. Folker J, Murdoch B, Cahill L, Delatycki M, Corben L, Vogel A. Dysarthria in Friedreich’s ataxia: a perceptual analysis. Folia Phoniatr Logop. 2010;62(3):97–103. https://doi.org/10.1159/000287207.

    Article  PubMed  Google Scholar 

  26. Poole ML, Wee JS, Folker JE, Corben LA, Delatycki MB, Vogel AP. Nasality in Friedreich ataxia. Clin Linguist Phon. 2015;29(1):46–58. https://doi.org/10.3109/02699206.2014.954734.

    Article  PubMed  Google Scholar 

  27. Ackermann H, Hertrich I. Speech rate and rhythm in cerebellar dysarthria: an acoustic analysis of syllabic timing. Folia Phoniatr Logop. 1994;46(2):70–8. https://doi.org/10.1159/000266295.

    Article  CAS  PubMed  Google Scholar 

  28. Darley FL, Aronson AE, Brown JR. Differential diagnostic patterns of dysarthria. J Speech Hear Res. 1969;12(2):246–69.

    Article  CAS  PubMed  Google Scholar 

  29. Gentil M. Dysarthria in Friedreich disease. Brain Lang. 1990;38(3):438–48. https://doi.org/10.1016/0093-934X(90)90126-2.

    Article  CAS  PubMed  Google Scholar 

  30. Joanette Y, Dudley JG. Dysarthric symptomatology of Friedreich’s ataxia. Brain Lang. 1980;10(1):39–50. https://doi.org/10.1016/0093-934X(80)90036-X.

    Article  CAS  PubMed  Google Scholar 

  31. Kent RD, Kent JF, Rosenbek JC, Vorperian HK, Weismer G. A speaking task analysis of the dysarthria in cerebellar disease. Folia Phoniatr Logop. 1997;49(2):63–82. https://doi.org/10.1159/000266440.

    Article  CAS  PubMed  Google Scholar 

  32. Kent RD, Netsell R, Abbs JH. Acoustic characteristics of dysarthria associated with cerebellar disease. J Speech Hear Res. 1979;22(3):627–48. https://doi.org/10.1044/jshr.2203.627.

    Article  CAS  PubMed  Google Scholar 

  33. Portnoy RA, Aronson AE. Diadochokinetic syllable rate and regularity in normal and in spastic and ataxic dysarthric subjects. Journal of Speech and Hearing Disorders. 1982;47(3):324–8. https://doi.org/10.1044/jshd.4703.324.

    Article  CAS  PubMed  Google Scholar 

  34. Ziegler W, Wessel K. Speech timing in ataxic disorders: sentence production and rapid repetitive articulation. Neurology. 1996;47(1):208–14. https://doi.org/10.1212/WNL.47.1.208.

    Article  CAS  PubMed  Google Scholar 

  35. Kent RD, Weismer G, Kent JF, Rosenbek JC. Toward phonetic intelligibility testing in dysarthria. J Speech Hear Disord. 1989;54(4):482–99. https://doi.org/10.1044/jshd.5404.482.

    Article  CAS  PubMed  Google Scholar 

  36. Yorkston KM, Strand EA, Kennedy MRT. Comprehensibility of dysarthric speech: implications for assessment and treatment planning. Am J Speech Lang Pathol. 1996;5(1):55–65. https://doi.org/10.1044/1058-0360.0501.55.

    Article  Google Scholar 

  37. Yorkston K, Beukelman D, Strand E, Bell K. Management of motor speech disorders in children and adults. Austin, TX: PRO-ED. Inc.; 1999.

    Google Scholar 

  38. Manto M, Bower JM, Conforto AB, Delgado-Garcia JM, da Guarda SNF, Gerwig M, Habas C, Hagura N, Ivry RB, Marien P, Molinari M, Naito E, Nowak DA, Oulad Ben Taib N, Pelisson D, Tesche CD, Tilikete C, Timmann D. Consensus paper: roles of the cerebellum in motor control–the diversity of ideas on cerebellar involvement in movement. Cerebellum (London, England). 2012;11(2):457–87. https://doi.org/10.1007/s12311-011-0331-9.

    Article  PubMed  Google Scholar 

  39. Guenther FH. Neural Control of Speech. United Kingdom: MIT Press. 2016.

  40. Tourville JA, Guenther FH. The DIVA model: a neural theory of speech acquisition and production. Lang Cognit Process. 2011;26(7):952–81. https://doi.org/10.1080/01690960903498424.

    Article  Google Scholar 

  41. Spencer KA, Rogers MA. Speech motor programming in hypokinetic and ataxic dysarthria. Brain Lang. 2005;94(3):347–66. https://doi.org/10.1016/j.bandl.2005.01.008.

    Article  PubMed  Google Scholar 

  42. De Bodt MS, Hernández-Díaz Huici ME, Van De Heyning PH. Intelligibility as a linear combination of dimensions in dysarthric speech. J Commun Disord. 2002;35(3):283–92. https://doi.org/10.1016/S0021-9924(02)00065-5.

    Article  PubMed  Google Scholar 

  43. Hertrich I, Ackermann H. Temporal and spectral aspects of coarticulation in ataxic dysarthria: An acoustic analysis. J Speech Lang Hear Res. 1999;42(2):367–81. https://doi.org/10.1044/jslhr.4202.367.

    Article  CAS  PubMed  Google Scholar 

  44. Brendel B, Ackermann H, Berg D, Lindig T, Schölderle T, Schöls L, Synofzik M, Ziegler W. Friedreich ataxia: dysarthria profile and clinical data. Cerebellum. 2013;12(4):475–84. https://doi.org/10.1007/s12311-012-0440-0.

    Article  CAS  PubMed  Google Scholar 

  45. Cole J. Prosody in context: a review. Language, Cognition and Neuroscience. 2015;30(1–2):1–31. https://doi.org/10.1080/23273798.2014.963130.

    Article  Google Scholar 

  46. Ladd DR. Intonational phonology. Cambridge University Press; 2008.

    Book  Google Scholar 

  47. Kent RD, Rosenbek JC. Prosodic disturbance and neurologic lesion. Brain Lang. 1982;15(2):259–91. https://doi.org/10.1016/0093-934X(82)90060-8.

    Article  CAS  PubMed  Google Scholar 

  48. Liss JM, Spitzer SM, Caviness JN, Adler C. The effects of familiarization on intelligibility and lexical segmentation in hypokinetic and ataxic dysarthria.  J Acoustical Soc Am. 2002;112:3022. https://doi.org/10.1121/1.1515793.

    Article  Google Scholar 

  49. Liss JM, Spitzer SM, Caviness JN, Adler C, Edwards BW. Lexical boundary error analysis in hypokinetic and ataxic dysarthria. J Acoustical Soc Am. 2000;107(6):3415–24. https://doi.org/10.1121/1.429412.

    Article  CAS  PubMed  Google Scholar 

  50. Lowit A, Kuschmann A, Kavanagh K. Phonological markers of sentence stress in ataxic dysarthria and their relationship to perceptual cues. J Commun Disord. 2014;50:8–18. https://doi.org/10.1016/j.jcomdis.2014.03.002.

    Article  PubMed  Google Scholar 

  51. Trudeau S. CoRDS Registry, 2013;

  52. Enderby PM, & Palmer R. FDA-2: Frenchay dysarthria assessment: Examiner’s Manual. Pro-ed, 2008.

  53. Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, Cummings JL, Chertkow H. The Montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695–9.

    Article  PubMed  Google Scholar 

  54. Walshe M, Peach RK, Miller N. Dysarthria impact profile: development of a scale to measure psychosocial effects. Int J Lang Commun Disord. 2009;44(5):693–715. https://doi.org/10.1080/13682820802317536.

    Article  PubMed  Google Scholar 

  55. Allison KM, Hustad KC. Impact of sentence length and phonetic complexity on intelligibility of 5-year-old children with cerebral palsy. Int J Speech Lang Pathol. 2014;16(4):396–407. https://doi.org/10.3109/17549507.2013.876667.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kim H, Martin K, Hasegawa-Johnson M, Perlman A. Frequency of consonant articulation errors in dysarthric speech. Clin Linguist Phon. 2010;24(10):759–70. https://doi.org/10.3109/02699206.2010.497238.

    Article  PubMed  Google Scholar 

  57. Peirce J. PsychoPy-Psychology software for Python Release 2020.1.2, 2020.

  58. Revelle WR (2017). Psych: Procedures for Personality and Psychological Research.

  59. Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15(2):155–63. https://doi.org/10.1016/j.jcm.2016.02.012.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Nalborczyk L, Batailler C, Lœvenbruck H, Vilain A, Bürkner P-C. An introduction to Bayesian multilevel models using brms: a case study of gender effects on vowel variability in standard Indonesian. 2019;62(5):1225–42. https://doi.org/10.1044/2018_JSLHR-S-18-0006.

    Article  Google Scholar 

  61. Makowski D, Ben-Shachar MS, Chen SHA, Lüdecke D. Indices of effect existence and significance in the Bayesian framework. Front Psychol. 2019;0:2767. https://doi.org/10.3389/FPSYG.2019.02767.

    Article  Google Scholar 

  62. Perkell JS, Lane H, Denny M, Matthies ML, Tiede M, Zandipour M, Vick J, Burton E. Time course of speech changes in response to unanticipated short-term changes in hearing state. The Journal of the Acoustical Society of America. 2007;121(4):2296–311. https://doi.org/10.1121/1.2642349.

    Article  PubMed  Google Scholar 

  63. Anand S, Stepp CE. Listener perception of monopitch, naturalness, and intelligibility for speakers with Parkinson’s disease. J Speech Lang Hear Res. 2015;58(4):1134–44. https://doi.org/10.1044/2015_JSLHR-S-14-0243.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Miller N, Noble E, Jones D, Allcock L, Burn DJ. How do I sound to me? Perceived changes in communication in Parkinson’s disease. Clin Rehabil. 2008;22(1):14–22. https://doi.org/10.1177/0269215507079096.

    Article  PubMed  Google Scholar 

  65. Pell MD, Cheang HS, Leonard CL. The impact of Parkinson’s disease on vocal-prosodic communication from the perspective of listeners. Brain Lang. 2006;97(2):123–34. https://doi.org/10.1016/j.bandl.2005.08.010.

    Article  PubMed  Google Scholar 

  66. Yorkston KM, Miller RM, & Strand EA (2004). Management of speech and swallowing disorders in degenerative diseases. Pro ed.

  67. Eadie TL, Yorkston KM, Klasner ER, Dudgeon BJ, Deitz JC, Baylor CR, ... & Amtmann D. Measuring communicative participation: a review of self-report instruments in speech-language pathology. Am J Speech Lang Pathol. 2006;15(4):307–20.

Download references

Acknowledgements

We would like to thank the participants for their time and effort to participate in this study.

Funding

This research was funded by the NIH NIDCD F31 DC017877-01A1 and the Council of Academic Programs in Communication Sciences and Disorders.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allison Hilger.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hilger, A., Cloud, C. & Fahey, T. Speech Impairment in Cerebellar Ataxia Affects Naturalness More Than Intelligibility. Cerebellum 22, 601–612 (2023). https://doi.org/10.1007/s12311-022-01427-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-022-01427-y

Keywords

Navigation